
Component Deployment with PLaneT
You Want it Where?

Jacob Matthews
University of Chicago

jacobm@cs.uchicago.edu

Abstract
For the past two years we have been developing PLaneT, a pack-
age manager built into PLT Scheme’s module system that simplifies
program development by doing away with the distinction between
installed and uninstalled packages. In this paper we explain how
PLaneT works and the rationales behind our major design choices,
focusing particularly on our decision to integrate PLaneT into PLT
Scheme and the consequences that decision had for PLaneT’s de-
sign. We also report our experience as PLaneT users and developers
and describe what have emerged as PLaneT’s biggest advantages
and drawbacks.

1. Introduction
No matter how great your programming language is, it is always
harder to write a program in it yourself than it is to let someone
else write it for you. That is one reason why libraries are a big deal
in programming languages, big enough that some languages are
associated as much with their libraries as they are with their core
features (e.g., Java with java.util and C++ with the STL).

But when you move away from the standard libraries that come
built in to your programming language, you can end up paying a
high price for your convenience. If your program depends on any
libraries, you have to make sure those dependences are installed
wherever your program will run. And any dependences those li-
braries have need to be installed too, and any dependences those li-
braries have, and so on. If you don’t have any help with this task, it
is often easier to avoid using too many libraries than it is to explain
how to install dozens of dependences in a README file. A Scheme
programmer in this situation might reasonably bemoan the fact that
the choice needs to be made: why, in a language like Scheme with
so many great facilities for code reuse, is it so impractical to actu-
ally reuse code?

In this paper we describe our attempt at addressing that problem
by presenting the PLaneT package distribution system built into
PLT Scheme [5], a component-deployment tool that aims to make
package distribution and installation entirely transparent. To the
extent possible, PLaneT does away with the notion of an uninstalled
package: a developer can use any PLaneT package in a program just
by referring to it as though it were already installed, and whenever
anyone runs that program, the PLaneT system will automatically

Proceedings of the 2006 Scheme and Functional Programming Workshop
University of Chicago Technical Report TR-2006-06

install it if necessary. Effectively, programmers get to treat every
library, even those they write themselves, as a standard library,
giving them the advantages of libraries without the pain of library
deployment.

Since PLaneT retrieves packages from a centralized reposi-
tory, it also establishes a component marketplace for developers;
it serves as a one-stop shop where they can publish their own pro-
grams and discover useful programs written by others. In effect,
PLaneT is an infrastructure that transforms PLT Scheme’s effec-
tive standard library from a monolithic cathedral development ef-
fort into a bazaar where anyone can contribute and the most use-
ful libraries rise to the top, buoyed by their quality and usefulness
rather than an official blessing [11]. This bazaar-like development
reinforces itself to the benefit of all PLT Scheme users: in the two
years since PLaneT has been included in PLT Scheme, users have
contributed nearly 300,000 lines of new Scheme code in 115 pack-
ages.

In this paper, we explain our experience with building and main-
taining PLaneT, with particular attention to PLaneT’s more unusual
design features and how they have worked in practice. Section 2
sets the stage by briefly introducing some existing component sys-
tems such as the Comprehensive Perl Archive Network (CPAN)
with particular attention to their deployment strategies. Section 3
then uses those other systems to motivate our goals for PLaneT.
The next few sections explain how we tried to achieve those goals:
section 4 explains our server design, section 5 explains our client
design with particular attention to our choice of integrating com-
ponent deployment into the language rather than keeping it as an
external program, section 6 discusses how PLaneT maintains PLT
Scheme tool support, and section 7 explains a few complications
we foresaw and tried to address in our design. In section 8 we try to
assess how well our design has stood up over the two years PLaneT
has been in use.

2. Some popular component systems
Before we explain the decisions we made for PLaneT, we need
to explain some background on existing component systems, how
they work, and some of their pitfalls. The software development
community has learned a lot about both the benefits of software
components and the problems they can cause. Probably the most
famous such problem is so-called “DLL hell,” a term coined to
describe what can happen to a Microsoft Windows installation if
DLLs (for “dynamically-linked libraries,” a component technol-
ogy) are installed incorrectly. Under the DLL system, when a pro-
gram wants some functionality from a DLL, it refers to the DLL
by name only. This can become a problem because the DLL may
evolve over the course of new releases; if two different programs
both rely on different versions of the same library, then they cannot
both be installed on the same system at the same time. Furthermore,
since DLLs have no particular package deployment strategy, soft-

157



ware installers have to install any necessary libraries themselves;
and if an installer overwrites a DLL it can inadvertently break other
programs, possibly even leading to a situation where the user’s en-
tire system is unusable. Microsoft has addressed this problem in
several ways; the most recent of which is its .NET assembly format,
which includes metadata that includes versioning information [10].

Neither of those systems deal with component distribution — it
is the programmer’s responsibility to figure out some other way to
locate useful components and to arrange for them to be installed on
users’ computers, and if a user wants to upgrade a component then
it is up to that user to find and install it. Other component systems
have done work to help with these tasks, though. For instance,
CPAN [1] is a central repository of Perl libraries and scripts that
users can download, and tools allow users to install and upgrade
these libraries automatically in some cases (more on this later).
The Ruby programming language features a similar system called
RubyGems [12]. Many Unix-like operating systems also feature
package distribution systems that address these problems; Debian’s
dpkg system [14], for instance, provides a central repository of
programs and shared libraries that users can automatically fetch,
install, and upgrade upon request.

Since these systems try to do more than DLLs do, they have to
solve more potential problems. The most major of these is that if a
tool installs a new component that relies on functionality from other
components, the tool must also install appropriate versions of those
prerequisites if the user does not already have them. Identifying
the entire set of uninstalled prerequisites is not too difficult given
the right metadata, but automatically deciding what “appropriate”
means in this context is more of a challenge. For a human, the most
appropriate version of a prerequisite would probably be the one that
provides all the functionality that the requiring component needs in
the highest-quality way and has the fewest bugs. But an automatic
tool cannot hope to figure out which package that is, so it needs to
simplify the problem somehow.

The solution CPAN.pm (an automated client for CPAN) uses is
to assume that the version of a given package with the highest
version number is the most appropriate, based on the reasoning that
the highest version number represents the most recent package and
therefore the one with the most features and fewest bugs. That is, if
the user requests package foo, then CPAN.pm finds the most recent
version of foo it can. Furthermore, if foo depends on package
bar, then CPAN.pm downloads the highest-numbered version of
bar available (unless foo explicitly asks for a particular version
or a version number in a particular numeric range).

This policy is extremely optimistic, in that it assumes all pro-
grams can use any version of a package in place of its predecessors.
If for instance bar removes a function from its public interface in a
particular release, then unless foo compensates for that change by
releasing a new package with updated code or dependence informa-
tion, it will fail to install properly. In practice this problem does not
come up much, probably because most packages on CPAN only re-
lease a few different versions and those that are intended for use as
libraries try to maintain backwards-compatibility. However, it can
and has come up in the past, and there is no automatic way to cope
with it.

Debian’s dpkg system uses a similar underlying strategy to
CPAN.pm’s, but has evolved a convention that serves as a cop-
ing mechanism: many Debian packages include a number directly
in their names (for instance, libc5 versus libc6); if a package
changes and breaks backwards-compatibility, the number in the
package’s name changes. This way, humans looking through the
package list can select the most recent version of a package for new
projects without worrying that future revisions will break back-
wards compatibility.

The RubyGems system takes the convention a step farther;
their “Rational Versioning Policy,” while not technically required
of packages, is strongly recommended and explicitly supported by
their automatic installation tools. The rational versioning policy re-
quires that a package’s version should be a dotted triple of numbers
(e.g., 1.4.2). Incrementing the first number indicates a backwards-
incompatible change, incrementing the second number indicates a
backwards-compatible change that adds features, and an increment
of the last number indicates an internal change such as a bug-fix
that should not be visible to users. The automatic installation tools
use these numbers to decide which version of a package to down-
load; if a package requests a package of version number at least
2.3.1, then the tool considers version 2.5.0 an acceptable substitute
but not version 3.4.2.

All of these systems are in some sense optimistic, because they
all let a tool decide to substitute one version of a package for
another, and there is no way to know for certain that the program
making the request doesn’t depend on some hidden behavior that
differs between the two. Still, in practice this system seems to
work out, since most programs are not so deeply tied to the inner
workings of libraries they depend on that changes to those libraries
will break them.

3. Goals
In 2003 we decided to build a “CPAN for PLT Scheme” called
PLaneT1. We wanted our design to keep or improve on the good
features of existing component systems while removing as many of
the undesirable properties of those approaches as we could. Specif-
ically, we wanted to make it very easy for PLaneT to automatically
retrieve and install packages and recursively satisfy dependencies
with the best available packages, while giving package developers
as much flexibility as possible. We also wanted to make it easy for
programmers to find available packages and incorporate them into
their own programs, and easy for users of those programs to install
the packages they needed. More specifically:

• We wanted programmers to be able to find available libraries
easily and should be able to correctly incorporate them into
programs without having to know much about PLaneT. We
also wanted PLaneT’s more advanced features to have a gentle
learning curve.

• We wanted users to be able to correctly use programs that rely
on PLaneT libraries without being aware that those libraries,
or PLaneT itself, existed. Ideally, we wanted whether or not a
program relies on a library to be an implementation detail.

Moreover, and perhaps most importantly, we wanted to get rid
of the statefulness inherent to other package management systems.
With CPAN, for instance, every available package might or might
not be installed on any particular user’s computer, so a program that
relies on a particular CPAN package might or might not work for
that user depending on the global state defined by which packages
are installed. If that state does not have the necessary packages,
then the user or a setup script has to do what amounts to a set! that
updates the state. Just as global variables make it hard to reason
about whether a particular code snippet will work, we hypothesized
that the statefulness of package installations make it more difficult
than necessary to use component deployment systems. We wanted
to eliminate that problem to the extent possible.

One non-goal we had for PLaneT was making the client able
to manage the user’s overall computing environment, such as man-

1 After considering the name “CSPAN” briefly, we decided on the name
PLaneT due to the fact that it implied a global network, it contained the
letters P, L, and T in the correct order, and it turned out that John Clements
had coincidentally already designed a logo fit the name perfectly.

158 Scheme and Functional Programming, 2006



aging global system configuration files or installing shared C li-
braries into standard locations. PLaneT is intended to help PLT
Scheme programmers share PLT Scheme libraries effectively, and
we can accomplish that goal much more simply if we assume that
the PLaneT client can have absolute control over its domain. That
isn’t to say that PLaneT code cannot interact with C libraries —
in fact, thanks to Barzilay’s foreign interface [3] it is often quite
easy to write a PLaneT package that interacts with a C library —
but distributing and installing those C libraries on all the platforms
PLT Scheme supports is not a problem PLaneT is intended to solve.

Our design for PLaneT consists of a client and a server: the
client satisfies programs’ requests for packages by asking for a
suitable package file from the server, and the server determines the
best package to serve for each request.

4. The PLaneT server
Most of the rest of this paper concerns the design of the PLaneT
client, but there is something to be said about the server as well.
PLaneT relies on a single, centralized repository located at http:
//planet.plt-scheme.org/. That site is the ultimate source for
all PLaneT packages: it contains the master list of all packages that
are available, and it is also responsible for answering clients’ pack-
age requests. Naturally, that means it has to decide which package
to return in response to these requests. Furthermore, since the server
is centralized, it is responsible for deciding what packages can be
published at all.

4.1 Versioning policy
As we discussed in section 2, PLaneT, or any other automatic com-
ponent deployment system, needs a policy to make tractable the de-
cision of what packages are compatible with what other packages.
The policy we have chosen is essentially a stricter variant of De-
bian’s de facto versioning policy or RubyGems’ Rational Version-
ing Policy, with the difference that PLaneT distinguishes between
the underlying version of a library, which the author may choose ar-
bitrarily, and the package version, which PLaneT assigns. Because
of this split, we can control the policy for package version numbers
without demanding that package authors conform to our numbering
policies for the “real” version numbers of their packages.

The package version of any package consists of two integers:
the major version number and the minor version number (which
we will abbreviate major.minor in descriptions, though technically
version numbers 1.1, 1.10, and 1.100 are all distinct). The first ver-
sion of a package is always 1.0, the next backwards compatible ver-
sion is always 1.1, and then 1.2, and on up, incrementing the minor
version number but keeping the major version number constant. If
a new version breaks compatibility, it gets the next major version
and gets minor version 0, so the first version that breaks backwards
compatibility with the original package is always 2.0. The pattern
is absolute: compatible upgrades increment the minor version only,
and incompatible upgrades increment the major version and reset
the minor version.

This makes it very easy for the PLaneT server to identify the
best package to send to a client in response to any request. For
instance, as of this writing the PLaneT repository contains four ver-
sions of the galore.plt package with package versions 1.0, 2.0, 3.0,
3.1, 3.2, and 3.3. If a client requests a package compatible with ga-
lore.plt version 3.0, the server can easily determine that 3.3 is the
right package version to use for that request, based only on the ver-
sion numbers. Similarly if a client requests a package compatible
with version 2.0, then it knows to respond with version 2.0 even
though more recent versions of the package are available, since
the developer has indicated that those versions are not backwards-
compatible.

The policy’s effectiveness depends on the conjecture that pack-
age maintainers’ notions of backwards compatibility correspond
to actual backwards compatibility in users’ programs. While it is
easy to come up with hypothetical scenarios in which the conjec-
ture would be false, it seems to hold nearly always in practice, and
the fact that is a more conservative version of strategies already
used in successful component deployment systems gives us more
assurance that our policy represents a reasonable trade-off.

4.2 Package quality control
As maintainers of the PLaneT repository, we are responsible for
deciding which submitted packages to include into the repository.
We decided early on that our policy for quality control should be
to accept all submitted packages. We decided this for a few rea-
sons. First, we wanted to make it as easy as possible for authors
to submit packages, because after all a package repository is only
useful if it contains packages. All the nontrivial quality-control
metrics we could think of would either entail too much work to
scale effectively orimpose barriers to submission that we thought
were unacceptably high. For instance, we considered only accept-
ing packages that provided a test suite whose tests all passed, but
we decided that would discourage programmers from submitting
packages without first writing large test suites in some test-suite
notation that we would have to devise; this seemed too discourag-
ing. (Of course we want programmers to write large, high-quality
test suites for their packages, and many of them do; but mandat-
ing those test suites seemed overly burdensome.) Second, we sus-
pected that low-quality packages didn’t need any special weeding
out, since no one would want to use them or suggest that others
use them; meanwhile high-quality packages would naturally float
to the top without any help.

As for malicious packages, after a similar thought process we
decided that there was nothing technical we could reasonably do
that would stop a determined programmers from publishing a pack-
age that intentionally did harm, and that throwing up technical hur-
dles would likely do more harm than good by offering users a false
sense of security and malicious programmers a challenge to try and
beat. But again, we suspected that the community of package users
could probably address this better by reputation: bad packages and
their authors would be warned against and good packages and their
authors would be promoted.

In short, after some consideration we decided that trying to
perform any kind of serious quality control on incoming packages
amounted to an attempt at a technical solution for a social problem,
so we opted to let social forces solve it instead. This solution is the
same solution used by the other component systems we studied,
which gave us confidence that our decision was workable.

5. The client as a language feature
The PLaneT client works by hooking in to the guts of PLT Scheme’s
module system. In PLT Scheme, programmers can write modules
that depend on other modules in several ways. For instance, the
following code:

(module circle-lib mzscheme
(require (file "database.ss")) ; to use run-sql-query
(require (lib "math.ss")) ; to use π

(define query "SELECT radius FROM circles")
(define areas

(map (lambda (r) (∗ pi r r)) (run-sql-query q)))

(provide areas))

Scheme and Functional Programming, 2006 159

http://planet.plt-scheme.org/
http://planet.plt-scheme.org/


defines a module named circle-lib in the default mzscheme lan-
guage. The first thing mzscheme does when loading circle-lib (ei-
ther in response to a direct request from the user or because some
other module has required it) is to process all of its requirements.
In this case there are two, (require (file "database.ss")) and (re-
quire (lib "math.ss")), each of which use a different variant of the
require form: the (require (file "database.ss")) variant loads the
module in the file database.ss in the same directory as the source
code of circle-lib, and (require (lib "math.ss")) loads the module
in the file math.ss located in PLT Scheme’s standard library.

PLaneT integrates into this system by simply adding another
new require form. It looks like this:

(require (planet "htmlprag.ss" ("neil" "htmlprag.plt" 1 3)))

This declaration tells mzscheme that the module that contains it
depends on the module found in file htmlprag.ss from the package
published by PLaneT user neil called htmlprag.plt, and that only
packages with major version 1 and minor version at least 3 are
acceptable.

When mzscheme processes this require statement, it asks the
PLaneT client for the path to a matching package, in which it
will look for the file the user wanted (htmlprag.ss in this case).
The client keeps installed packages in its own private cache, with
each package version installed in its own separate subdirectory. It
consults this cache in response to these requests; due to the PLaneT
package version numbering strategy, it does not need to go over the
network to determine if it already has an installed a package that
satisfies the request. If it already has a suitable package installed, it
just returns a path do that installation; if it does not, it contacts the
central PLaneT server, puts in its request, and installs the package
the server returns; the process of installing that package recursively
fetches and installs any other packages that might also be necessary.

This strategy goes a long way towards solving the statefulness
problem we explained in section 3, for the simple reason that
we can think of the statefulness problem as a simpler variant of
the problem modules were designed to solve. In the absence of
modules (or an equivalent to modules), programmers have to write
what amount to control programs that tell the underlying Scheme
system how to load definitions in such a way that the top level is
set to an appropriate state before running the main program — a
problem that is especially bad for compilation [6], but that causes
annoyance even without considering compilation at all. The module
system addresses that top-level statefulness problem by making
modules explicitly state their requirements rather than relying on
context, and making it mzscheme’s responsibility to figure out how
to satisfy those requirements; from this perspective PLaneT just
extends the solution to that statefulness problem to address the
package-installation statefulness problem as well2.

The connection between packages and the require statement
also has a few pleasant side effects. First, it makes it easy for pro-
grammers to understand: PLT Scheme programmers need to learn
how to use the module system anyway, so using PLaneT just means
learning one new twist on a familiar concept, not having to learn
how to use an entirely new feature. Second, including package de-
pendence information directly in the source code means that there
is no need for a PLaneT programmer to write a separate metadata
file indicating which packages a program relies on. PLaneT is the

2 There is one important exception where statefulness shines though: if a
computer that is not connected to the network runs a program that requires
a PLaneT package, then that program might or might not succeed depending
on whether or not the PLaneT client has already installed a suitable version
of the required package. If it has, then the requirement will succeed; oth-
erwise it will fail and signal an error. Of course there isn’t very much the
PLaneT client can do to prevent this stateful behavior, but it does mean that
PLaneT works best for computers that are usually online.

only component deployment system we are aware of with this prop-
erty.

6. Tool support
Since the PLaneT client is a part of the language of PLT Scheme,
tools that work with PLT Scheme code need to be able to work with
PLaneT packages just as naturally as they work with any other con-
struct in the language. This is particularly important for DrScheme,
the PLT Scheme development environment [4], because it provides
programmers with several development tools that PLT Scheme pro-
grammers expect to work consistently regardless of which features
their programs use. For instance, it provides a syntax checker that
verifies proper syntax and draws arrows between bound variables
and their binding occurrences, a syntactic coverage checker that
verifies that a program has actually executed every code path, and
several debuggers and error tracers. Making PLaneT a language ex-
tension rather than an add-on tool places an extra burden on us here,
since it means programmers will expect all the language tools to
work seamlessly with PLaneT requires. For this reason, we have
tried to make tool support for PLaneT as automatic as possible.

In doing so, we are helped by the fact that PLaneT is incorpo-
rated into Scheme rather than some other language, because due to
macros Scheme tools cannot make very strong assumptions about
the source code they will process. Similarly, in PLT Scheme tools
must be generic in processing require statements because a macro-
like facility exists for them as well: even in fully-expanded code,
a program may not assume that a require statement of the form
(require expr) has any particular semantics, because expr has not
itself been “expanded” into a special value representing a particular
module instantiation. To get that value, the tool must pass expr to a
special function called the module name resolver, which is the only
function that is entitled to say how a particular require form maps to
a target module. PLaneT is nothing but an extension to the module
name resolver that downloads and installs packages in the process
of computing this mapping; since tools that care about the meaning
of require statements have to go through the module name resolver
anyway, they automatically inherit PLaneT’s behavior.

This has made DrScheme’s tools easy to adapt to PLaneT, and
in fact almost none of them required any modification. Figure 1
shows some of DrScheme’s tools in action on a small PLaneT
program: the first screenshot shows the syntax check tool correctly
identifying bindings that originate in a PLaneT package, and the
second shows PLaneT working with DrScheme’s error-tracing and
debugging tools simultaneously. None of these tools needed to be
altered at all to work correctly with PLaneT.

We did have to make some changes to a few tools for a couple of
reasons. The first was that some tools were only designed to work
on particular require forms, or made assumptions about the way
that libraries would be laid out that turned out to be too strong.
For instance, both the Help Desk and the compilation manager
assumed that all programs were installed somewhere within the
paths that comprise PLT Scheme’s standard library; PLaneT installs
downloaded code in other locations, which caused those tools to
fail until we fixed them. In principle, this category of tool change
was just fixing bugs that had been in these tools all along, though
only exposed by PLaneT’s new use patterns.

The second reason we had to modify some tools was that the
generic action that they took for all libraries didn’t really make
sense in the context of PLaneT packages, so we had to add special
cases. For instance, we had to add code to the Setup PLT installa-
tion management tool so that it would treat multiple installed ver-
sions of the same package specially. Also, DrScheme also includes
a module browser that shows a program’s requirements graph; we
modified that tool to allow users to hide PLaneT requirements in
that display as a special case. The module browser worked with-

160 Scheme and Functional Programming, 2006



Figure 1. Two tools interacting seamlessly with PLaneT packages

out that modification, but we found that the extra requirements
that PLaneT packages introduced transitively tended to add a lot
of noise without being very useful. Figure 2 illustrates the impact
this special case had on the quality of the module browser’s output.

7. A few complications
We think PLaneT’s version-naming policy works fairly well: it is
simple to implement, simple to understand, and easy enough to use
that if you don’t understand it at all you’ll probably do the right
thing anyway. But of course versioning is never that quite that sim-
ple, and we have had to make a few tweaks to the system to make
sure it didn’t cause subtle and difficult-to-debug problems. Three
of these problems, which we call the “bad update” problem, the

“magic upgrade” problem and the module state problem, deserve
special attention.

The bad update problem
If a program relies on buggy, undocumented or otherwise subject-
to-change behavior in a package (for instance because it works
around a bug), then it may break in the presence of upgrades that
PLaneT thinks of as compatible (for instance the eventual bug fix).
We expect these cases to be the exception, not the rule (if we
thought these were the common case then we wouldn’t have added
versioning to PLaneT at all), but they could still represent major
problems for programmers unlucky enough to have to deal with
them.

Scheme and Functional Programming, 2006 161



Figure 2. Sometimes special cases are important: the module browser displaying all requirements (above), and hiding PLaneT requirements
(below)

162 Scheme and Functional Programming, 2006



To help those programmers cope, we decided early on to follow
the lead set by the other component deployment systems we studied
and make it possible to write a PLaneT require statement that
asks for a more specific package than just anything backwards-
compatible with a named package. In general, a PLaneT require
specification may specify any range for a package’s minor version
(but not the major version, since two different major versions of
a package don’t have the same interface in general); for instance
the package specifier ("soegaard" "galore.plt" 3 (0 1)))) indicates
that either package version 3.0 or version 3.1 is acceptable, but
no others. In fact the normal way of writing a package specifier
— ("soegaard" "galore.plt" 3 0) — is just syntactic sugar for
("soegaard" "galore.plt" 3 (0 +inf.0)). Similarly, the equality
form ("soegaard" "galore.plt" 3 (= 0)) is just syntactic sugar for
("soegaard" "galore.plt" 3 (0 0)). We hope that programmers will
not need to use these more general facilities often, but we expect
that they are occasionally very useful to have around.

The magic upgrade problem
A subtler and stranger behavior that we had to be careful not to
allow in PLaneT is what we call the magic upgrade problem, in
which a user could run a program and end up changing the behavior
of seemingly unrelated programs. If, in satisfying a requirement for
a particular package specification, the PLaneT client always were to
always look for the most recent locally-installed package that meets
the criteria, then the following situation could arise: suppose a user
has a program P that requires package A with package version 1.0
or later as part of its implementation, and has package A version 1.1
installed locally to satisfy that requirement. If package A releases a
new version, 1.2, and then the user runs program Q which requires
package A version 1.2 or later, then PLaneT must install package A
version 1.2 locally. But now, if the user runs the original program
P, its behavior will change because instead of using version 1.1,
the client can now supply it with the newer package version 1.2.
This might change program P’s behavior in unpredictable ways,
which is bad because according to our design principles, the user
isn’t supposed to have to know that package A even exists, much
less that P and Q happen both to use different versions of it and so
running Q might “magically upgrade” P without any warning!

Rather than allow this to happen, we have introduced a layer
of indirection. When a program requires a PLaneT package for the
first time, the PLaneT client remembers which particular package
it told mzscheme to use to satisfy that requirement. Whenever the
same program asks again, it returns the same path, regardless of
whether newer packages are available. We call these associations
“links” and a particular module’s set of links its “linkage”; the
links are collectively stored in the PLaneT client’s “linkage table.”
The PLaneT client adds a link to a module every time it resolves a
request for that module, and a module’s linkage persists until the
user explicitly clears it.

Module state conflicts
Another problem that can come up when two versions of a pack-
age are installed at the same time is that they may inadvertently
interfere with each other because they both behave in similar ways
but have different module state. In PLT Scheme, a module has only
one copy of its mutable state, no matter how many times other mod-
ules require it — this allows a module to establish its own whole-
program invariants or to regulate access to unique, non-duplicatable
resources on the system. For instance, suppose a library author
writes a module that maintains some internal state in the course
of its duties:

(module db mzscheme

(define ∗dbfile∗ "my-database.db")

(define num-items 0)

(define (write-to-db datum)
(with-output-to-file ∗dbfile∗

(lambda ()
(display datum)
(set! num-items (add1 num-items)))))

(provide write-to-db))

The author of this code might reasonably expect that no mat-
ter how a program used the db module to write values into my-
database.db, num-items would remain a faithful count of the num-
ber of items there (assuming that the file started out empty, of
course). That author would be correct, because no matter how many
modules require the db module they will each get the same copy
with shared internal state.

If the author puts this module in a PLaneT package, the same
behavior applies. However, that behavior may not be good enough
anymore, because PLaneT allows multiple versions of the same
package to run side-by-side. Suppose the developer releases a new
version of the db package:

;; new db module for PLaneT package version 1.1
(module db mzscheme

(define ∗dbfile∗ "my-database.db")
(define num-items 0)
(define (write-to-db datum) . . . [as before])
(define (read-from-db)

(with-input-from-file ∗dbfile∗
(lambda ()

(do ((ret null)
(i 0 (+ i 1)))

((= i num-items) ret)
(set! ret (cons (read) ret))))))

(provide write-to-db read-from-db))

Again, the developer might expect that num-items is always a true
count of the number of items written into my-database.db. But
it might not be the case anymore: from the solutions to the bad
update problem and the magic upgrade problem, we know that for
a variety of reasons different libraries within the same program
might end up loading the same package with two different versions
because of packages insisting on particular package versions or
because of different modules in the same program getting different
links. In particular, that means that a single program might use
the db modules from package version 1.0 and package version
1.1 at the same time, and as far as mzscheme is concerned those
are two separate modules with completely distinct states. If that
were to happen, writes that went through db version 1.0 would not
be reflected in version 1.1’s counter, possibly leading to a corrupt
database file or even a program crash if the program called read-
from-db.

We expect that most packages will not exhibit problems like
this, because most programming libraries do not rely on invariants
between module-level state and system state in the way the db
module does. However, we also expect that for the modules that
do rely on those invariants, this problem could easily be a source
of inscrutable bugs. Therefore our design takes the conservative
approach and by default we do not allow multiple versions of
the same library to be loaded at the same time, unless explicitly
allowed.

Scheme and Functional Programming, 2006 163



Considering all of these issues together, we have arrived at the fol-
lowing final policy for clients resolving a PLaneT require statement
for a particular program and a particular package.

1. PLaneT first decides what package to use to satisfy the request:

(a) If the program has a link in the linkage table to a particular
version of the package being requested, then PLaneT always
uses that package.

(b) If the program does not have a link, then PLaneT obtains a
package that satisfies the request either from its local cache
or from the central PLaneT server.

2. If PLaneT decides on a version of a package, and another ver-
sion of that same package is already loaded (not just installed
but actually running) in some other part of the program, then
PLaneT signals an error unless the package itself explicitly tells
PLaneT that simultaneous loading should be allowed. Other-
wise it uses the package it has decided on to satisfy the request.

8. Evaluation
Up to this point we have described PLaneT as we originally de-
signed it. PLaneT has been in active use for over two years, and
in that time we have gained a lot of experience with how well our
design decisions have worked out in practice. Generally we have
found that our design works well, though we have identified a few
problems and oversights, both with its technical design and with its
ease-of-use features (which we consider to be at least as important).

First the good: PLaneT has quickly become many developers’
default way to distribute PLT Scheme libraries, and over the course
of two years we have received 115 packages and nearly 300,000
lines of Scheme code, compared to about 700,000 of Scheme code
in PLT Scheme’s standard library (which includes among other
things the entire DrScheme editor implementation). These user-
contributed libraries have been very useful for adding important
functionality that PLT Scheme itself does not include. For instance,
PLaneT currently holds implementations of several sophisticated
standard algorthims, three different database interfaces, two unit-
testing frameworks, and several bindings to popular native libraries.
PLT Scheme itself does not come with much built-in support for
any of these, so the easy availability of PLaneT packages has been
a big help to people writing programs that need those. (Schematics’
unit-testing package SchemeUnit [16], packaged as schemeunit.plt,
is the single most popular package on PLaneT and is required
by over a quarter of the other available packages.) Its utility is
also demonstrated by its usage statistics: PLaneT packages have
been download 22475 times (as of the moment of this writing),
an average of about 30 a day since PLaneT was launched (and an
average of about 50 a day in the last year).

We have also found that integration of package installation into
the require statement has had the effect we had hoped it would,
that programmers would have fewer qualms about using packages
than they would otherwise. Our evidence is anecdotal, but we have
found that code snippets on the PLT Scheme users’ mailing list
and in other programming fora have frequently included PLaneT
require statements, without even necessarily calling attention to
that fact; before PLaneT it was not common at all for people to
post code that relied on nonstandard libraries.

It is harder to say how successful our package version num-
bering strategy has been. We have not yet heard of any problems
resulting from backwards incompatibilities (with one arguable ex-
ception as we discuss below), but we have also found that nearly
half of all packages (54 out of 115) have only ever released one
version, and most (72 of 115) had released only one or two ver-
sions. This is not in itself alarming — on CPAN, for instance, most

packages only ever release one version as well — but none of our
version-compatibility machinery is relevant to packages with only
one version, so the fact that it has not given us problems is not very
informative.

Another area where we are still unsure of whether our policy
was correct is our choice not to perform any quality control on
incoming packages. While we still believe that we cannot and
should not try to verify that every submitted package is “good,”
we have begun to think that it may be beneficial to make a few
sanity checks before accepting a package. For instance, if an author
submits a new version of a package and claims the new version
is backwards-compatible, we cannot verify that absolutely but we
can at least make sure that it provides all the same modules the
old package did, and that none of those modules fails to provide
a name that was provided before. This does impose an additional
hurdle for package authors to clear, but in practice it seems that the
only packages that fail this test have obvious packaging errors that
authors would like to know about.

There have been a few design problems we have had to ne-
gotiate. One significant problem was that as new versions of PLT
Scheme were released, they introduced backwards incompatibili-
ties, and packages written for one version did not work later ones.
Similarly, code written for newer versions of PLT Scheme used fea-
tures that were not available in older versions, which could cause
problems for users of those older versions who tried to download
the new packages. This is the same problem that PLaneT’s ver-
sion numbering scheme tries to address, of course, but since PLT
Scheme is not itself a PLaneT package we could not reuse that
scheme directly. Furthermore, the PLT Scheme distribution does
occasionally introduce large, generally backwards-incompatible
changes in its releases, big events that define a new “series”,
but much more regularly it introduces more minor incompatibil-
ities. These incompatibilities are obscure enough that we thought
PLaneT packages would nearly never be affected by them, so we
did not want to make package authors release new versions of their
packages in response to each one. Considering these, we decided
on the following policy: when an author submits a package, we
associate a PLT Scheme series with it (currently there are two such
series, the “2xx” series and the “3xx” series), which places that
package in the 2xx or 3xx repository. By default we assume that
any PLT Scheme version in a series can use any package in its cor-
responding repository; packages can override this assumption by
indicating a minimum required PLT Scheme version if necessary.

Another problem that quickly became apparent in our initial
design was that we had imposed an annoying hurdle for package
developers. Developers understandably want to test their packages
as they will appear to users, and in particular they want to be able
to require and test packages using the (require (planet · · · )) form
since that form is what others will use. With our original design,
there was no way to do that; the only way to have your package
accessible as via PLaneT was to actually submit it, so developers
had to interact with their code using either a (require (file · · · )) or
a (require (lib · · · )) statement instead. This caused many problems
and considerable frustration. Our first attempt to solve the problem
was to allow programmers to install a package file directly to their
PLaneT clients’ local caches without going through the server. This
helped but did not eliminate the problem, since programmers still
had to create and install a package every time they wanted to run
their tests. Based on the response to that, we arrived at our current
solution: programmers can create “development links” that tell the
PLaneT client to look for a given package version in an arbitrary
directory of the programmer’s choice. Since we added development
links we have not had any more problems with programmers not
being able to test their packages adequately.

164 Scheme and Functional Programming, 2006



9. Conclusions and related work
With two years of experience, we feel confident now in concluding
that PLaneT has basically met the goals we set out for it: it is easy
to use for package authors, developers who use PLaneT packages,
and end users who don’t want to think about PLaneT packages at
all. We attribute this ease of use to our unusual inclusion of package
management features into the language itself, which has allowed
us to do away with the concept of an uninstalled package from
the programmer’s perspective. While to our knowledge that feature
is unique, PLaneT otherwise borrows heavily from previously-
existing package distribution systems and language-specific library
archives.

As we have already discussed, we have taken insight for our
design from the designs of CPAN, Debian Linux’s dpkg system
and Ruby’s RubyGems system; and there are several other pack-
age management systems that also bear some level of similarity
to PLaneT. Many Linux distributions come with automatic pack-
age managers (such as Gentoo’s portage system [15] and the
RPM Package Manager [7]), and there have also been a few im-
plementations of completely automatic application-launching sys-
tems, i.e. application package managers that eliminate the con-
cept of an uninstalled application: Zero Install [8] and klik [9]
are examples of this kind of system. Furthermore there are many
language-specific component and component-deployment systems
for other language implementations; examples of these include
Chicken Scheme’s eggs system [17], Michael Schinz’ scsh pack-
age manager [13], and the Common Lisp asdf and asdf-install sys-
tem [2].

We hope with PLaneT we have achieved a synthesis of all these
ideas into a single coherent system that is as natural and as easy
to use as possible. We believe that every programming language
should make it simple for one programmer to reuse another pro-
grammer’s code; and we believe a key part of that is just making
sure that programmers have a standard way to access each others’
programs. As we have shown, moving package management into
the language’s core is a powerful way to achieve that goal.

Acknowledgements
We would like to acknowledge Robby Findler, Dave Herman, Ryan
Culpepper, Noel Welsh, and the anonymous reviewers for their
valuable comments about PLaneT in general and this paper. Thanks
also to the National Science Foundation for supporting this work.

References
[1] Elaine Ashton and Jarkko Hietaniemi. Cpan frequently asked

questions. http://www.cpan.org/misc/cpan-faq.html.

[2] Dan Barlow and Edi Weitz. ASDF-Install. http://common-lisp.
net/project/asdf-install/.

[3] Eli Barzilay and Dmitry Orlovsky. Foreign interface for PLT Scheme.
In Workshop on Scheme and Functional Programming, 2004.

[4] Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew
Flatt, Shriram Krishnamurthi, Paul Steckler, and Matthias Felleisen.
DrScheme: A programming environment for Scheme. Journal
of Functional Programming, 12(2):159–182, March 2002. A
preliminary version of this paper appeared in PLILP 1997, LNCS
volume 1292, pages 369–388.

[5] Matthew Flatt. PLT MzScheme: Language manual. Technical Report
TR97-280, Rice University, 1997. http://www.plt-scheme.org/
software/mzscheme/.

[6] Matthew Flatt. Composable and compilable macros: You want it
when? In ACM SIGPLAN International Conference on Functional
Programming (ICFP), 2002.

[7] Eric Foster-Johnson. Red Hat RPM Guide. Red Hat, 2003.

[8] Thomas Leonard. The zero install system, 2006. http://
zero-install.sourceforge.net/.

[9] Simon Peter. klik, 2006. http://klik.atekon.de/.

[10] Matt Pietrek. Avoiding DLL hell: Introducing application metadata
in the Microsoft .NET framework. MSDN Magazine, October
2000. Available online: http://msdn.microsoft.com/msdnmag/
issues/1000/metadata/.

[11] Eric S. Raymond. The Cathedral and the Bazaar. O’Reilly, 2001.

[12] RubyGems user guide, 2006. http://www.rubygems.org/read/
book/1.

[13] Michael Schinz. A proposal for scsh packages, August 2005. http:
//lampwww.epfl.ch/∼schinz/scsh packages/install-lib.
pdf.

[14] Gustavo Noronha Silva. APT HOWTO, 2005. http://www.debian.
org/doc/manuals/apt-howto/apt-howto.en.pdf.

[15] Sven Vermeulen et al. A portage introduction, 2006. http:
//www.gentoo.org/doc/en/handbook/handbook-x86.xml?
part=2&chap=1.

[16] Noel Welsh, Francisco Solsona, and Ian Glover. SchemeUnit and
SchemeQL: Two little languages. In Proceedings of the Third
Workshop on Scheme and Functional Programming, 2002.

[17] Felix L. Winkelmann. Eggs unlimited, 2006. http://www.
call-with-current-continuation.org/eggs/.

Scheme and Functional Programming, 2006 165

http://www.cpan.org/misc/cpan-faq.html
http://common-lisp.net/project/asdf-install/
http://common-lisp.net/project/asdf-install/
http://www.plt-scheme.org/software/mzscheme/
http://www.plt-scheme.org/software/mzscheme/
http://zero-install.sourceforge.net/
http://zero-install.sourceforge.net/
http://klik.atekon.de/
http://msdn.microsoft.com/msdnmag/issues/1000/metadata/
http://msdn.microsoft.com/msdnmag/issues/1000/metadata/
http://www.rubygems.org/read/book/1
http://www.rubygems.org/read/book/1
http://lampwww.epfl.ch/~schinz/scsh_packages/install-lib.pdf
http://lampwww.epfl.ch/~schinz/scsh_packages/install-lib.pdf
http://lampwww.epfl.ch/~schinz/scsh_packages/install-lib.pdf
http://www.debian.org/doc/manuals/apt-howto/apt-howto.en.pdf
http://www.debian.org/doc/manuals/apt-howto/apt-howto.en.pdf
http://www.gentoo.org/doc/en/handbook/handbook-x86.xml?part=2&chap=1
http://www.gentoo.org/doc/en/handbook/handbook-x86.xml?part=2&chap=1
http://www.gentoo.org/doc/en/handbook/handbook-x86.xml?part=2&chap=1
http://www.call-with-current-continuation.org/eggs/
http://www.call-with-current-continuation.org/eggs/

	Introduction
	Some popular component systems
	Goals
	The PLaneto -.01inT server
	Versioning policy
	Package quality control

	The client as a language feature
	Tool support
	A few complications
	Evaluation
	Conclusions and related work

