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Abstract
Even in the days of Lisp’s simple defmacro systems, macro devel-
opers did not have adequate debugging support from their program-
ming environment. Modern Scheme macro expanders are more
complex than Lisp’s, implementing lexical hygiene, referential
transparency for macro definitions, and frequently source proper-
ties. Scheme implementations, however, have only adopted Lisp’s
inadequate macro inspection tools. Unfortunately, these tools rely
on a naive model of the expansion process, thus leaving a gap
between Scheme’s complex mode of expansion and what the pro-
grammer sees.

In this paper, we present a macro debugger with full support
for modern Scheme macros. To construct the debugger, we have
extended the macro expander so that it issues a series of expan-
sion events. A parser turns these event streams into derivations in
a natural semantics for macro expansion. From these derivations,
the debugger extracts a reduction-sequence (stepping) view of the
expansion. A programmer can specify with simple policies which
parts of a derivation to omit and which parts to show. Last but not
least, the debugger includes a syntax browser that graphically dis-
plays the various pieces of information that the expander attaches
to syntactic tokens.

1. The Power of Macros
Modern functional programming languages support a variety of
abstraction mechanisms: higher-order functions, expressive type
systems, module systems, and more. With functions, types, and
modules, programmers can develop code for reuse; establish sin-
gle points of control for a piece of functionality; decouple distinct
components and work on them separately; and so on. As Paul Hu-
dak [18] has argued, however, “the ultimate abstraction of an ap-
plication is a . . . language.” Put differently, the ideal programming
language should allow programmers to develop and embed entire
sub-languages.

The Lisp and Scheme family of languages empower program-
mers to do just that. Through macros, they offer the programmer
the ability to define syntactic abstractions that manipulate bind-
ing structure, perform some analyses, re-order the evaluation of ex-
pressions, and generally transform syntax in complex ways—all at
compile time. As some Scheme implementors have put it, macros
have become a true compiler (front-end) API.
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In the context of an expressive language [9] macros suffice to
implement many general-purpose abstraction mechanisms as li-
braries that are indistinguishable from built-in features. For exam-
ple, programmers have used macros to extend Scheme with con-
structs for pattern matching [32], relations in the spirit of Pro-
log [8, 27, 15, 20], extensible looping constructs [7, 26], class sys-
tems [24, 1, 14] and component systems [30, 13, 5], among others.
In addition, programmers have also used macros to handle tasks tra-
ditionally implemented as external metaprogramming tasks using
preprocessors or special compilers: Owens et al. [23] have added a
parser generator library to Scheme; Sarkar et al. [25] have created
an infrastructure for expressing nano-compiler passes; and Herman
and Meunier [17] have used macros to improve the set-based analy-
sis of Scheme. As a result, implementations of Scheme such as PLT
Scheme [12] have a core of a dozen or so constructs but appear to
implement a language the size of Common Lisp.

To support these increasingly ambitious applications, macro
systems had to evolve, too. In Lisp systems, macros are compile-
time functions over program fragments, usually plain S-expressions.
Unfortunately, these naive macros don’t really define abstractions.
For example, these macros interfere with the lexical scope of their
host programs, revealing implementation details instead of encap-
sulating them. In response, Kohlbecker et al. [21] followed by
others [4, 6, 11] developed the notions of macro hygiene, refer-
ential transparency, and phase separation. In this world, macros
manipulate syntax tokens that come with information about lexical
scope; affecting scope now takes a deliberate effort and becomes
a part of the macro’s specification. As a natural generalization,
modern Scheme macros don’t manipulate S-expressions at all but
opaque syntax representations that carry additional information. In
the beginning, this information was limited to binding information;
later Dybvig et al. [6] included source information. Now, Scheme
macros contain arbitrary properties [12] and programmers discover
novel uses of this mechanism all the time.

Although all these additions were necessary to create true syn-
tactic abstraction mechanisms, they also dramatically increased the
complexity of macro systems. The result is that both inexperienced
and advanced users routinely ask on Scheme mailing lists about un-
foreseen effects, subtle errors, or other seemingly inexplicable phe-
nomena. While “macrologists” always love to come to their aid,
these questions demonstrate the need for software tools that help
programmers explore their macro programs.

In this paper, we present the first macro stepper and debugger.
Constructing this tool proved surprisingly complex. The purpose
of the next section is to explain the difficulties abstractly, before we
demonstrate how our tool works and how it is constructed.
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2. Explaining Macros
Macro expansion takes place during parsing. As the parser traverses
the concrete syntax,1 it creates abstract syntax nodes for primitive
syntactic forms, but stops when it recognizes the use of a macro.
At that point, it hands over the (sub)phrases to the macro, which,
roughly speaking, acts as a rewriting rule.

In Lisp and in some Scheme implementations, a macro is ex-
pressed as a plain function; in R5RS Scheme [19], macros are
expressed in a sub-language of rewriting rules based on patterns.
Also in Lisp, concrete syntax are just S-expressions; Lisp macro
programming is thus typically first-order functional programming2

over pairs and symbols. The most widely used Scheme imple-
mentations, however, represent concrete syntax with structures that
carry additional information: lexical binding information, origi-
nal source location, code security annotations, and others. Scheme
macro programming is therefore functional programming with a
rich algebraic datatype.

Given appropriate inputs, a Lisp macro can go wrong in two
ways. First, the macro transformer itself may raise a run-time ex-
ception. This case is naturally in the domain of run-time debuggers;
after all, it is just a matter of traditional functional programming.
Second, a Lisp macro may create a new term that misuses a syntac-
tic form, which might be a primitive form or another macro. This
kind of error is not detected when the macro is executing, but only
afterwards when the parser-expander reaches the misused term.

Modern Scheme macros might go wrong in yet another way.
The additional information in a syntax object interacts with other
macros and primitive special forms. For example, macro-introduced
identifiers carry a mark that identifies the point of their introduc-
tion and binding forms interpret identifiers with different marks
as distinct names. Scheme macros must not only compute a cor-
rect replacement tree but also equip it with the proper additional
properties.

Even in Lisp, which has supported macros for almost 50
years now, macros have always had impoverished debugging en-
vironments. A typical Lisp environment supports just two pro-
cedures/tools for this purpose: expand and expand-once (or
macroexpand and macroexpand-1 [28]). All Scheme implemen-
tations with macros have adapted these procedures.

When applied to a term, expand completely parses and expands
it; in particular, it does not show the intermediate steps of the rewrit-
ing process. As a result, expand distracts the programmer with too
many irrelevant details. For example, Scheme has three conditional
expressions: if, cond, and case. Most Scheme implementations
implement only if as a primitive form and define cond and case
as macros. Whether or not a special form is a primitive form or a
macro is irrelevant to a programmer except that macro expansion
reveals the difference. It is thus impossible to study the effects of
a single macro or a group of related macros in an expansion, be-
cause expand processes all macros and displays the entire abstract
syntax tree.

The task of showing individual expansion steps is left to the sec-
ond tool: expand-once. It consumes a macro application, applies
the matching macro transformer, and returns the result. In partic-
ular, when an error shows up due to complex macro interactions,
it becomes difficult to use expand-once easily because the of-
fending or interesting pieces are often hidden under a large pile of
syntax. Worse, iterated calls to expand-once lose information be-
tween expansion steps, because lexical scope and other information
depends on the context of the expansion call. This problem renders
expand-once unfit for serious macro debugging.

1 We consider the result of (read) as syntax.
2 Both Lisp and Scheme macro programmers occasionally use side-effects
but aside from gensym it is rare.

Implementing a better set of debugging tools than expand and
expand-once is surprisingly difficult. It is apparently impossible
to adapt the techniques known from run-time debugging. For exam-
ple, any attempt to pre-process the syntax and attach debugging in-
formation or insert debugging statements fails for two reasons: first,
until parsing and macro expansion happens, the syntactic structure
of the tree is unknown; second, because macros inspect their argu-
ments, annotations or modifications are likely to change the result
of the expansion process [31].

While these reasons explain the dearth of macro debugging
tools and steppers, they don’t reduce the need for them. What we
present in this paper is a mechanism for instrumenting the macro
expander and for displaying the expansion events and intermediate
stages in a useful manner. Eventually we also hope to derive a well-
founded model of macros from this work.

3. The Macro Debugger at Work
The core of our macro debugging tool is a stepper for macro
expansion in PLT Scheme. Our macro debugger shows the macro
expansion process as a reduction sequence, where the redexes are
macro applications and the contexts are primitive syntactic forms,
i.e., nodes in the final abstract syntax tree. The debugger also
includes a syntax display and browser that helps programmers
visualize properties of syntax objects.

The macro stepper is parameterized over a set of “opaque”
syntactic forms. Typically this set includes those macros imported
from libraries or other modules. The macro programmers are in
charge, however, and may designate macros as opaque as needed.
When the debugger encounters an opaque macro, it deals with the
macro as if it were a primitive syntactic form. That is, it creates an
abstract syntax node that hides the actual expansion of the macro.
Naturally, it does show the expansion of the subexpressions of the
macro form. The parameterization of primitive forms thus allows
programmers to work at the abstraction level of their choice. We
have found this feature of the debugger critical for dealing with
any nontrivial programs.

The rest of this section is a brief illustrative demonstration of the
debugger. We have picked three problems with macros from recent
discussions on PLT Scheme mailing lists, though we have distilled
them into a shape that is suitably simple for a technical paper.

3.1 Plain Macros
For our first example we consider a debugging scenario where the
macro writer gets the form of the result wrong. Here are three dif-
ferent versions of a sample macro that consumes a list of identifiers
and produces a list of trivial definitions for these identifiers:

1. in Lisp, the macro writer uses plain list-processing functions to
create the result term:

(define-macro (def-false . names)
(map (lambda (a) ‘(define ,a #f)) names))

2. in R5RS the same macro is expressed with a rewriting rule
notation like this:

(define-syntax def-false
(syntax-rules ()

[(def-false a ...) ((define a #f) ...)]))

3. in major alternative Scheme macro systems, the rule specifica-
tion is slightly different:

(define-syntax (def-false stx)
(syntax-case stx ()

[(_ a ...) (syntax ((define a #f) ...))]))
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The macro definition is a function that consumes a syntax tree,
named stx. The syntax-case construct de-structures the tree
and binds pattern variables to its components. The syntax
constructor produces a new syntax tree by replacing the pattern
variables in its template with their values.

Using the macro, like thus:

(def-false x y z)

immediately exposes a problem. The macro expander fails with
an error explaining that definitions can’t occur in an expression
context. Of course, the problem is that the macro produces a list of
terms, which the macro expander interprets as an application and
which, in turn, may not contain any definitions.

Our macro stepper shows the sequence of macro expansion
steps, one at a time:

Here we can see both the original macro form and the output of the
macro application. The original appears at the top, the output of the
first step at the bottom. The highlighted subterms on the top and
bottom are the redex and contractum, respectively. The separator
explains that this is a macro expansion step. At this point, an
experienced Lisp or Scheme programmer recognizes the problem.
A novice may need to see another step:

Here the macro expander has explicitly tagged the term as an
application. The third step then shows the syntax error, highlighting
the term and the context in which it occurred.

The macro debugger actually expands the entire term before it
displays the individual steps. This allows programmers to skip to
the very end of a macro expansion and to work backwards. The
stepper supports this approach with a graphical user interface that
permits programmers to go back and forth in an expansion and also
to skip to the very end and the very beginning. The ideas for this
interface have been borrowed from Clements’s algebraic run-time
stepper for PLT Scheme [3]; prior to that, similar ideas appeared in
Lieberman’s stepper [22] and Tolmach’s SML debugger [29].

3.2 Syntax properties
Nearly all hygienic macro papers use the or macro to illustrate the
problem of inadvertent variable capture:

(define-syntax (or stx)
(syntax-case stx ()

[(or e1 e2)
(syntax (let ([tmp e1]) (if tmp tmp e2)))]))

In Scheme, the purpose of (or a b) is to evaluate a and to produce
its value, unless it is false; if it is false, the form evaluates b and
produces its value as the result.

In order to keep or from evaluating its first argument more than
once, the macro introduces a new variable for the first result. In
Lisp-style macro expanders (or Scheme prior to 1986), the new tmp
binding captures any free references to tmp in e2, thus interfering
with the semantics of the macro and the program. Consequently,
the macro breaks abstraction barriers. In Scheme, the new tmp
identifier carries a mark or timestamp—introduced by the macro
expander—that prevents it from binding anything but the two oc-
currences of tmp in the body of the macro-generated let [21]. This
mark is vital to Scheme’s macro expansion process, but no interface
exists for inspecting the marks and the marking process directly.

Our macro debugger visually displays this scope information at
every step. The display indicates with different text colors3 from
which macro expansion step every subterm originated. Further-
more, the programmer can select a particular subterm and see how
the other subterms are related to it. Finally, the macro stepper can
display a properties panel to show more detailed information such
as identifier bindings and source locations.

The following example shows a programmer’s attempt to create
a macro called if-it, a variant of if that tries to bind the variable
it to the result of the test expression for the two branches:

(define-syntax (if-it1 stx) ;; WARNING: INCORRECT
(syntax-case stx ()

[(if-it1 test then else)
(syntax
(let ([it test]) (if it then else)))]))

The same mechanism that prevents the inadvertent capture in the or
example prevents the intentional capture here, too. With our macro
debugger, the puzzled macro writer immediately recognizes why
the macro doesn’t work:

When the programmer selects an identifier, that identifier and all
others with compatible binding properties are highlighted in the
same color. Thus, in the screenshot above, the occurrence of it
from the original program is not highlighted while the two macro-
introduced occurrences are.

3 Or numeric suffixes when there are no more easily distinguishable colors.
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For completeness, here is the macro definition for a working
version of if-it:

(define-syntax (if-it2 stx)
(syntax-case stx ()

[(if-it2 test then else)
(with-syntax

([it (datum->syntax-object #’if-it2 ’it)])
(syntax

(let ([it test])
(if it then else))))]))

This macro creates an identifier named it with the lexical con-
text of the original expression. The syntax form automatically un-
quotes it and injects the new identifier, with the correct proper-
ties, into the output. When the programmer examines the expansion
of (if-it2 a b c), all occurrences of it in then and else are
highlighted now.

3.3 Scaling up
The preceding two subsections have demonstrated the workings
of the macro debugger on self-contained examples. Some macros
cannot be tested in a stand-alone mode, however, because it is
difficult to extract them from the environment in which they occur.

One reason is that complex macros add entire sub-languages,
not just individual features to the core. Such macros usually in-
troduce local helper macros that are valid in a certain scope but
nowhere else. For example, the class form in PLT Scheme, which
is implemented as a macro, introduces a super form—also a
macro—so that methods in derived classes can call methods in
the base class. Since the definition of super depends on the rest
of the class, it is difficult to create a small test case to explore its
behavior. While restructuring such macros occasionally improves
testability, requiring restructuring for debugging is unreasonable.

In general, the problem is that by the time the stepper reaches
the term of interest, the context has been expanded to core syntax.
Familiar landmarks may have been transformed beyond recogni-
tion. Naturally this prevents the programmer from understanding
the macro as a linguistic abstraction in the original program. For
the class example, when the expander is about to elaborate the
body of a method, the class keyword is no longer visible; field
and access control declarations have been compiled away; and the
definition of the method no longer has its original shape. In such a
situation, the programmer cannot see the forest for all the trees.

The macro debugger overcomes this problem with macro hid-
ing. Specifically, the debugger implements a policy that determines
which macros the debugger considers opaque; the programmer can
modify this policy as needed. The macro debugger does not show
the expansion of macros on this list, but it does display the ex-
pansions of the subtrees in the context of the original macro form.
That is, the debugger presents steps that actually never happen and
it presents terms that the expander actually never produces. Still,
these intermediate terms are plausible and instructive, and for well-
behaved macros,4 they have the same meaning as the original and
final programs.

Consider the if-it2 macro from the previous subsection. After
testing the macro itself, the programmer wishes to employ it in the
context of a larger program:

(match expr
[(op . args)
(apply (eval op) (map eval args))]
[(? symbol? x)

4 For example, a macro that clones one of its subexpressions or inspects the
structure of a subexpression is not well-behaved.

(if-it2 (lookup x)
(fetch it)
(error ’unbound))])))

This snippet uses the pattern-matching form called match from a
standard (macro) library.

If the debugger had no “opaqueness policy” covering match, the
macro expander and therefore the stepper would show the expan-
sion of if-it2 within the code produced by match macro. That
code is of course a tangled web of nested conditionals, interme-
diate variable bindings, and failure continuations, all of which is
irrelevant and distracting for the implementor of if-it2.

To eliminate the noise and focus on just the behavior of interest,
the programmer instructs the macro debugger to consider match an
opaque form. Then the macro debugger shows the expansion of the
code above as a single step:

Although macro hiding and opaqueness policies simplify the
story of expansion presented to the programmer, it turns out that
implementing them is difficult and severely constrains the internal
organization of the macro stepper. Before we can explain this,
however, we must explain how Scheme expands macros.

4. Macro Expansion
Our model of macro expansion is an adaptation of Clinger and
Rees’s model [4], enriched with the lexical scoping mechanism of
Dybvig et al. [6] and the phase separation of Flatt [11]. Figures 1
through 3 display the details.

Macro expansion is a recursive process that takes an expression
and eliminates the macros, resulting in an expression in the core
syntax of the language. The macro expander uses an environment
to manage bindings and a phase number to manage staging. We use
the following judgment to say the term expr fully macro expands
into expr ′ in the syntactic environment E in phase number p:

p, E ` expr ⇓ expr′
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Terms expr ::= identifier
| datum
| (expr · · · expr)

Identifiers x , kw ::= symbol
| mark(identifier ,mark)
| subst(ident , ident , symbol)

Symbols s ::= countable set of names
Marks mark ::= countable set
Phases p ::= number: 0, 1, 2, . . .
Denotation d ::= variable

| 〈primitive, symbol〉
| 〈macro, transformer〉

Environments E : symbol × phase → denotation

Expansion relation p, E ` expr ⇓ expr
Macro step relation p, E ` expr → expr
Evaluation relation p, E ` expr ⇓eval expr

Figure 1. Semantic domains and relations

Figure 1 summarizes the domains and metavariables we use to
describe the semantics.5

The structure of expressions varies from system to system.
Lisp macro expanders operate on simple concrete syntax trees.
Scheme macro systems are required to be hygienic—that is, they
must respect lexical binding—and the expressions they manipulate
are correspondingly complex. The hygiene principle [21, 4] of
macro expansion places two requirements on macro expansion’s
interaction with lexical scoping:

1. Free identifiers introduced by a macro are bound by the binding
occurrence apparent at the site of the macro’s definition.

2. Binding occurrences of identifiers introduced by the macro (not
taken from the macro’s arguments) bind only other identifiers
introduced by the same macro expansion step.

The gist of the hygiene requirement is that macros act “like clo-
sures” at compile time. Hence the meaning of a macro can be de-
termined from its environment and its input; it does not depend on
the context the macro is used in. Furthermore, if the macro creates
a binding for a name that comes from the macro itself, it doesn’t
affect expressions that the macro receives as arguments.

Thinking of macro expansion in terms of substitution provides
additional insight into the problem. There are two occurrences of
substitution, and two kinds of capture to avoid. The first substitu-
tion consists of copying the macro body down to the use site; this
substitution must not allow bindings in the context of the use site
to capture names present in the macro body (hygiene condition 1).
The second consists of substituting the macro’s arguments into the
body; names in the macro’s arguments must avoid capture by bind-
ings in the macro body (hygiene condition 2), even though the latter
bindings are not immediately apparent in the macro’s result.

Consider the following sample macro:

(define-syntax (munge stx)
(syntax-case stx ()

[(munge e)
(syntax (mangle (x) e))]))

This macro puts its argument in the context of a use of a mangle
macro. Without performing further expansion steps, the macro ex-
pander cannot tell if the occurrence of x is a binding occurrence.

5 For simplicity, we do not model the store. Flatt [11] presents a detailed
discussion of the interaction between phases, environments, and the store.

The expander must keep enough information to allow for both pos-
sibilities and delay its determination of the role of x.

The hygiene requirement influences the way lexical bindings are
handled, and that in turn influences the structure of the expression
representation. Technically, the semantics utilizes substitution and
marking operations on expressions:

subst : Expr × Identifier × Symbol → Expr

mark : Expr ×Mark → Expr

Intuitively, these operations perform renaming and reversible
stamping on all the identifiers contained in the given expression.
These operations are generally done lazily for efficiency. There is
an accompanying forcing operation called resolve

resolve : Identifier → Symbol

that sorts through the marks and substitutions to find the meaning
of the identifier. Dybvig et al. [6] explain identifier resolution in
detail and justify the lazy marking and renaming operations.

The expander uses these operations to implement variable re-
naming and generation of fresh names, but they don’t carry the
meaning of the identifiers; that resides in the expander’s environ-
ment. This syntactic environment maps a symbol and a phase to a
macro, name of a primitive form, or the designator variable for a
value binding.

Determining the meaning of an identifier involves first resolving
the substitutions to a symbol, and then consulting the environment
for the meaning of the symbol in the current phase.

4.1 Primitive syntactic forms
Handling primitive syntactic forms generally involves recursively
expanding the expression’s subterms; sometimes the primitive ap-
plies renaming steps to the subterms before expanding them. De-
termining which rule applies to a given term involves resolving
the leading keyword and consulting the environment. Consider
the lambda rule from Figure 2. The keyword may be something
other than the literal symbol lambda, but the rule applies to any
form where the leading identifier has the meaning of the primitive
lambda in the current environment.

The lambda syntactic form generates a new name for each of
its formal parameters and creates a new body term with the old for-
mals mapped to the new names—this is the renaming step. Then it
extends the environment, mapping the new names to the variable
designator, and expands the new body term in the extended envi-
ronment. Finally, it re-assembles the lambda term with the new
formals and expanded body.

When the macro expander encounters one of the lambda-bound
variables in the body expression, it resolves the identifier to the
fresh symbol from the renaming step, checks to make sure that
the environment maps it to the variable designator (otherwise
it is a misused macro or primitive name), and returns the resolved
symbol.

The if and app (application) rules are simple; they just expand
their subexpressions in the same environment.

The let-syntax form, which introduces local macro defini-
tions, requires the most complex derivation rule (Figure 3). Like
lambda, it constructs fresh names and applies a substitution to
the body expression. However, it expands the right hand sides of
the bindings using a phase number one greater than the current
phase number. This prevents the macro transformers, which exist
at compile time, from accessing run-time variables.6 The macro
transformers are then evaluated in the higher phase, and the envi-

6 Flatt [11] uses phases to guarantee separate compilation on the context
of modules that import and export macros, but those issues are beyond the
scope of this discussion.
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ronment is extended in the original phase with the mapping of the
macro names to the resulting values. The body of the let-syntax
form is expanded in the extended environment, but with the original
phase number.

For our purposes the run-time component of the semantics is
irrelevant; we simply assume that the macro transformers act as
functions that compute the representation of a new term when
applied to a representation of the macro use. Thus, we leave the
evaluation relation (⇓eval ) unspecified.

4.2 Macros
Expanding a macro application involves performing the immediate
macro transformation and then expanding the resulting term. The
transformation step, represented by judgments of the form:

p, E ` expr → expr

essentially consists of retrieving the appropriate macro transformer
function from the environment and applying it to the macro use.
We assume an invertible mapping from terms to data:

reflect : Expr → Datum
reify : Datum → Expr

reify(reflect(expr)) = expr

Like the evaluation relation (⇓eval ), the details [6] of this operation
are unimportant.

The interesting part of the macro rule is the marking and un-
marking that supports the second hygiene condition. Identifiers in-
troduced by the macro should not bind occurrences of free vari-
ables that come from the macro’s arguments. The macro expander
must somehow distinguish the two. The expander marks the macro
arguments with a unique mark. When the macro transformer re-
turns a new term, the parts originating from arguments still have
a mark, and those that are newly introduced do not. Applying the
same mark again cancels out the mark on old expressions and re-
sults in marks on only the introduced expressions.

When a marked identifier is used in a binding construct, the
substitution only affects identifiers with the same name and the
same mark. This satisfies the requirements of the second hygiene
condition.

4.3 Syntax properties
The semantics shows how one kind of syntax property (scoping in-
formation) is manipulated and propagated by the macro expansion
process.

The macro systems of real Scheme implementations define var-
ious other properties. For example, some put source location in-
formation in the syntax objects, and this information is preserved
throughout macro expansion. Run time tools such as debuggers and
profilers in these systems can then report facts about the execution
of the program in terms of positions in the original code.

PLT Scheme allows macro writers to attach information keyed
by arbitrary values to syntax. This mechanism has given rise to
numerous lightweight protocols between macros, primitive syntax,
and language tools.

5. Implementation
Programmers think of macros as rewriting specifications, where
macro uses are replaced with their expansions. Therefore a macro
debugger should show macro expansion as a sequence of rewrit-
ing steps. These steps are suggestive of a reduction semantics, but
in fact we have not formulated a reduction semantics for macro
expansion.7 For a reduction semantics to be as faithful as the nat-

7 Bove and Arbilla [2], followed by Gasbichler [16], have formulated re-
duction systems that present the macro expansion process as an ordered

ural semantics we have presented, it would have to introduce ad-
ministrative terms that obscure the user’s program. We prefer to
present an incomplete but understandable sequence of steps con-
taining only terms from the user’s program and those produced by
macro expansion.

This section describes how we use the semantics in the imple-
mentation of the stepper, and the relationship between the seman-
tics and the information displayed to the user.

5.1 Overview
The structure of a debugger is like the structure of a compiler.
It has a front end that sits between the user and the debugger’s
internal representation of the program execution, a “middle end” or
optimizer that performs translations on the internal representation,
and a back end that connects the internal representation to the
program execution.

While information flows from a compiler’s front end to the back
end, information in a debugger starts at the back end and flows
through the front end to the user. The debugger’s back end monitors
the low-level execution of the program, and the front end displays
an abstract view of the execution to the user. The debugger’s middle
end is responsible for finessing the abstract view, “optimizing” it
for user comprehension.

Figure 4 displays the flow of information through our debugger.
We have instrumented the PLT Scheme macro expander to emit
information about the expansion process. The macro debugger re-
ceives this low-level information as a stream of events that carry
data representing intermediate subterms and renamings. The macro
debugger parses this low-level event stream into a structure repre-
senting the derivation in the natural semantics that corresponds to
the execution of the macro expander. These derivations constitute
the debugger’s intermediate representation.

The debugger’s middle end operates on the derivation gener-
ated by the back end, computing a new derivation tree with cer-
tain branches pruned away in accordance with the macro hiding
policy. Finally, the front end traverses the optimized intermediate
representation of expansion, turning the derivation structure into
a sequence of rewriting steps, which the debugger displays in a
graphical view. This view supports the standard stepping naviga-
tion controls. It also decorates the text of the program fragments
with colors and mark-ups that convey additional information about
the intermediate terms.

5.2 The Back End: Instrumentation
The macro expander of PLT Scheme is implemented as a collec-
tion of mutually recursive functions. Figure 5 presents a distilled
version of the main function (in pseudocode).

The expand-term function checks the form of the given term.
It distinguishes macro applications, primitive syntax, and variable
references with a combination of pattern matching on the struc-
ture of the term and environment lookup of the leading keyword.
Macro uses are handled by applying the corresponding transformer
to a marked copy of the term, then unmarking and recurring on
the result. Primitive forms are handled by calling the correspond-
ing primitive expander function from the environment. The initial
environment maps the name of each primitive (such as lambda) to
its primitive expander (expand-primitive-lambda). When the
primitive expander returns, expansion is complete for that term.
The definitions of some of the primitive expander functions are

sequence of states. Each state is a term in an explicit substitution syntax
(plus additional attributes). Unfortunately, these semantics are complex and
unsuitable as simple specifications for a reduction system. In comparison,
Clements [3] uses beta-value and delta-value rules as a complete specifica-
tion and proves his stepper correct.
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LAMBDA

E(resolve(kw), p) = 〈primitive, lambda〉 formals is a list of distinct identifiers
formals ′ = freshnamesE(formals) body ′ = subst(body , formals, formals ′)

E′ = E[
〈
formals ′, p

〉
7→ variable] p, E′ ` body ′ ⇓ body ′′

p, E ` (kw formals body) ⇓ (kw formals ′ body ′′
)

VARIABLE
resolve(x ) = x ′ E(x ′, p) = variable

p, E ` x ⇓ x ′

IF

E(resolve(kw), p) = 〈primitive, if〉
p, E ` test ⇓ test ′ p, E ` then ⇓ then ′ p, E ` else ⇓ else ′

p, E ` (kw test then else) ⇓ (kw test ′ then ′ else ′
)

APPLICATION

E(resolve(kw), p) = 〈primitive, app〉
∀i ≤ n : p, E ` expr ⇓ expr ′

p, E ` (kw expr0 · · · exprn) ⇓ (kw expr ′
0 · · · expr ′

n)

Figure 2. Primitive syntactic forms

LET-SYNTAX

E(resolve(kw), p) = 〈primitive, let-syntax〉 each vari is a distinct identifier
∀i ≤ n : var ′

i = freshnameE(var i)
vars = {var0, . . . , varn} vars ′ = {var ′

0, . . . , var
′
n} body ′ = subst(body , vars, vars ′)

∀i ≤ n : p + 1, E ` rhsi ⇓ rhs ′
i ∀i ≤ n : p + 1, E ` rhs ′

i ⇓eval transformer i

E′ = E[{
〈
var ′

i, p
〉
7→ transformer i}] p, E′ ` body ′ ⇓ body ′′

p, E ` (kw ((var0 rhs0) · · · (varn rhsn)) body) ⇓ body ′′

MACRO
p, E ` expr → expr′ p, E ` expr′ ⇓ expr′′

p, E ` expr ⇓ expr ′′

MACRO-STEP

E(resolve(kw), p) = 〈macro, transformer〉 mark = freshmarkE

expr = (kw form1 · · · formn) stx = reflect(mark(expr ,mark))
p + 1, E ` (transformer stx) ⇓eval stx ′ expr ′ = mark(reify(stx ′),mark)

p, E ` (kw form1 · · · formn) → expr ′

Figure 3. Macro definitions and uses

macro hiding
policy

annotated
grammar

Event Stream

Derivation

Synthetic Derivation

Rewriting Steps

parser Back End

Front End

Middle End

Figure 4. Implementation overview

given in Fig. 6; they recursively call expand-term on their sub-
terms, as needed.

The shaded code in Fig. 5 and Fig. 6 represents our additions to
the expander to emit debugging events. The calls to emit-event
correspond to our instrumentation for the macro debugger. A call
to emit-event send an event through a channel of communication
to the macro debugger.

The events carry data about the state of the macro expander.
Figure 7 shows a few of the event variants and the types of data

they contain. A visit event indicates the beginning of an expan-
sion step, and it contains the syntax being expanded. Likewise,
the expansion of every term ends with a return event that carries
the expanded syntax. The enter-macro and exit-macro events
surround macro transformation steps, and the macro-pre and
macro-post contain the marked versions of the starting and result-
ing terms. The enter-primitive and exit-primitive events
surround all primitive form expansions. For every primitive, such as
if, there is an event (primitive-if) that indicates that the macro
expander is in the process of expanding that kind of primitive form.
Primitives that create and apply renamings to terms send rename
events containing the renamed syntax. The next signal separates
the recursive expansion of subterms; next-part separates differ-
ent kinds of subterms for primitives such as let-syntax.

5.3 The Back End: From Events to Derivations
The back end of the macro debugger transforms the low-level event
stream from the instrumented expander into a derivation structure.
This derivation structure corresponds to the natural semantics ac-
count of the expansion process.

The kinds of events in the stream determine the structure of the
derivation, and the information carried by the events fills in the
fields of the derivation objects. Figure 8 lists a few of the variants
of the derivation datatype.
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expand-term(term, env, phase) =
emit-event("visit", term)
case term of

(kw . _)
where lookup(resolve(kw), env, phase)

= ("macro", transformer)

=> emit-event("enter-macro", term)

let M = fresh-mark
let term/M = mark(term, M)

emit-event("macro-pre", term/M)

let term2/M = transformer(term/M)

emit-event("macro-post", term/M)

let term2 = mark(term2/M, M)

emit-event("exit-macro", term2)

return expand-term(term2, env, phase)
(kw . _)

where lookup(resolve(kw), env, phase)
= ("primitive", expander)

=> emit-event("enter-primitive", term)

let term2 = expander(term, env, phase)

emit-event("exit-primitive", term2)

emit-event("return", term2)

return term2
id

where lookup(resolve(id), env, phase)
= "variable"

=> emit-event("enter-primitive", id)

let term2 = expand-variable(id, env, phase)

emit-event("exit-primitive", term2)

emit-event("return", term2)

return term2
else

=> raise syntax error

Figure 5. Expansion function

Recall the inference rules from Fig. 2 and Fig. 3. The corre-
sponding derivation structures contain essentially the same infor-
mation in a different form. The first two fields of all derivation vari-
ants are the terms before and after expansion. The remaining fields
are specific to the variant. In the mrule variant, the remaining field
contains the derivation of the macro’s result. In the lambda variant,
the third field contains the new formal parameters and body expres-
sion after renaming, and the final field contains the derivation that
represents the expansion of the renamed body expression. In the if
variant, the three additional fields are the derivations for the three
if subexpressions. The phase and environment parameters are not
stored explicitly in the derivation structures, but they can be recon-
structed for any subderivation from its context.

Creating structured data from unstructured sequences is a pars-
ing problem. By inspecting the order of calls to emit-event, re-
cursive calls to expand-term, and calls to other auxiliary func-
tions, it is possible to specify a grammar that describes the lan-
guage of event streams from the instrumented expander. Figure 9
shows such a grammar. By convention, non-terminal names start
with upper-case letters and terminal names start with lower-case
letters.

The ExpandTerm non-terminal describes the events generated
by the expand-term function (Fig. 5) in expanding a term, whether
it is the full program or a subterm. It has two variants: one for
macros and one for primitive syntax. The Primitive non-terminal
has a variant for each primitive syntactic form, and the productions

expand-prim-lambda(term, env, phase) =

emit-event("primitive-lambda")

case term of
(kw formals body)

where formals is a list of identifiers
=> let formals2 = freshnames(formals)

let env2 =
extend-env(env, formals, "variable", phase)

let body2 = rename(body, formals, formals2)

emit-event("rename", formals2, body2)

let body3 = expand-term(body2, env2)
return (kw formals2 body3)

else => raise syntax error

expand-prim-if(term, env, phase) =

emit-event("primitive-if")

case term of
(if test-term then-term else-term)

=> emit-event("next")

let test-term2 = expand-term(test-term, env)

emit-event("next")

let then-term2 = expand-term(then-term, env)

emit-event("next")

let else-term2 = expand-term(else-term, env)
return (kw test-term2 then-term2 else-term2)

else => raise syntax error

expand-variable(id, env, phase) =
let id2 = resolve(id)

emit-event("variable", id2)

return id2

expand-primitive-let-syntax(term, env, phase)

emit-event("primitive-let-syntax", term)

case term of
(kw ([lhs rhs] ...) body)

where each lhs is a distinct identifier
=> let lhss = (lhs ...)

let rhss = (rhs ...)
let lhss2 = freshnames(lhss)
let body2 = rename(body, lhss, lhss2)

emit-event("rename", lhss2 body2)

let rhss2 =
for each rhs in rhss:

emit-event("next")

expand-term(rhs, env, phase+1)
let transformers =

for each rhs2 in rhss2:
eval(rhs2, env)

emit-event("next-part")

let env2 =
extend-env(env, lhss2, transformers, phase)

let body3 = expand-term(body2, env2, phase)
return body3

else => raise syntax error

Figure 6. Expansion functions for primitives and macros

22 Scheme and Functional Programming, 2006



visit : Syntax
return : Syntax
enter-macro : Syntax
exit-macro : Syntax
macro-pre : Syntax
macro-post : Syntax
enter-primitive : Syntax
exit-primitive : Syntax
rename : Syntax × Syntax
next : ()
next-part : ()
primitive-lambda : ()
primitive-if : ()
primitive-let-syntax : ()

Figure 7. Selected primitive events and the data they carry

for each primitive reflect the structure of the primitive expander
functions from Fig. 6.

The macro debugger parses event streams into derivations ac-
cording to this grammar. After all, a parse tree is the derivation
proving that a sentence is in a language.8 The action routines for
the parser simply combine the data carried by the non-terminals—
that is, the events—and the derivations constructed by the recursive
occurrences of ExpandTerm into the appropriate derivation struc-
tures. There is one variant of the derivation datatype for each infer-
ence rule in the natural semantics (see Fig. 8).

5.4 Handling syntax errors
Both the derivation datatype from Fig. 8 and the grammar fragment
in Fig. 9 describe only successful macro expansions, but a macro
debugger must also deal with syntax errors. Handling such errors
involves two additions to our framework:

1. new variants of the derivation datatype to represent interrupted
expansions; after all, a natural semantics usually does not cope
with errors

2. representation of syntax errors in the event stream, and addi-
tional grammar productions to recognize the new kinds of event
streams

5.4.1 Derivations representing errors
A syntax error affects expansion in two ways:

1. The primitive expander function or macro transformer raises an
error and aborts. We call this the direct occurrence of the error.

2. Every primitive expander in its context is interrupted, having
completed some but not all of its work.

It is useful to represent these two cases differently. Figure 10
describes the extended derivation datatype.

For example, consider the expansion of this term:

(if x (lambda y) z)

The form of the if expression is correct; expand-primitive-if
expands its subterms in order. When the expander encounters the
lambda form, it calls the expand-primitive-lambda function,
which rejects the form of the lambda expression and raises a syntax
error. We represent the failed expansion of the lambda expression
by wrapping a prim:lambda node in an error-wrapper node.
The error wrapper also includes the syntax error raised.

8 Parser generators are widely available; we used the PLT Scheme parser
generator macro [23].

That failure prevents expand-primitive-if from expand-
ing the third subexpression and constructing a result term—
but it did successfully complete the expansion of its first sub-
term. We represent the interrupted expansion of the if expres-
sion by wrapping the partially initialized prim:if node with an
interrupted-wrapper. The interrupted wrapper also contains
a tag that indicates that the underlying prim:if derivation has
a complete derivation for its first subterm, it has an interrupted
derivation for its second subterm, and it is missing the derivation
for its third subterm.

5.4.2 The Error-handling Grammar
When an expansion fails, because either a primitive expander func-
tion or a macro transformer raises an exception, the macro expander
places that exception at the end of the event stream as an error
event. The event stream for the bad syntax example in Sec. 5.4.1 is:

visit enter-prim prim-if
next visit enter-prim variable exit-prim return
next visit enter-prim prim-lambda error

To recognize the event streams of failed expansions, we extend the
grammar in the following way: for each non-terminal representing
successful event streams, we add a new non-terminal that repre-
sents interrupted event streams. We call this the interrupted non-
terminal, and by convention we name it by suffixing the original
non-terminal name with “/Error.” This interruption can take the
form of an error event concerning the current rule or an interrup-
tion in the processing of a subterm.

Figure 11 shows two examples of these new productions.9 The
first variant of each production represents the case of a direct
error, and the remaining variants represent the cases of errors in
the expansions of subterms. The action routines for the first sort
of error uses error-wrapper, and those for the second sort use
interrupted-wrapper.

Finally, we change the start symbol to a new non-terminal called
Expansion with two variants: a successful expansion ExpandTerm
or an unsuccessful expansion ExpandTerm/Error.

The error-handling grammar is roughly twice the size of the
original grammar. Furthermore, the new productions and action
routines share a great deal of structure with the original produc-
tions and action routines. We therefore create this grammar auto-
matically from annotations rather than manually adding the error-
handling productions and action routines. The annotations specify
positions for potential errors during the expansion process and po-
tentially interrupted subexpansions. They come in two flavors: The
first is the site of a potential error, written (! tag), where tag is
a symbol describing the error site. The second is a non-terminal
that may be interrupted, written (? NT tag), where NT is the non-
terminal.

Figure 12 gives the definitions of the PrimitiveLambda and
PrimitiveIf non-terminals from the annotated grammar. From
these annotated definitions we produce the definitions of both the
successful and interrupted non-terminals from Fig. 9 and Fig. 11,
respectively.

The elaboration of the annotated grammar involves splitting ev-
ery production alternate containing an error annotation into its suc-
cessful and unsuccessful parts. This splitting captures the meaning
of the error annotations:

• A potential error is either realized as an error that ends the
event stream, or no error occurs and the event stream continues
normally.

9 Figure 11 also shows that we rely on the delayed commitment to a partic-
ular production possible with LR parsers.
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Derivation ::= (make-mrule Syntax Syntax Derivation)
| (make-prim:if Syntax Syntax Derivation Derivation Derivation)
| (make-prim:lambda Syntax Syntax Renaming Derivation)
| (make-prim:let-syntax Syntax Syntax Renaming DerivationList Derivation)

. . .
Renaming ::= Syntax × Syntax

Figure 8. Derivation structures

ExpandTerm ::= visit enter-macro macro-pre macro-post exit-macro ExpandTerm
| visit enter-primitive Primitive exit-primitive return

Primitive ::= PrimitiveLambda
| PrimitiveIf
| PrimitiveApp
| PrimitiveLetSyntax
| ...

PrimitiveLambda ::= primitive-lambda rename ExpandTerm

PrimitiveIf ::= primitive-if next Expandterm next ExpandTerm next ExpandTerm

PrimitiveLetSyntax ::= primitive-let-syntax rename NextExpandTerms next-part ExpandTerm

NextExpandTerms ::= ε
| next ExpandTerm NextExpandTerms

Figure 9. Grammar of event streams

Derivation ::= . . .

| (make-error-wrapper Symbol Exception Derivation)

| (make-interrupted-wrapper Symbol Derivation)

Figure 10. Extended derivation datatype

PrimitiveLambda/Error ::= primitive-lambda error
| primitive-lambda renames ExpandTerm/Error

PrimitiveIf/Error ::= primitive-if error
| primitive-if next ExpandTerm/Error
| primitive-if next ExpandTerm next ExpandTerm/Error
| primitive-if next ExpandTerm next ExpandTerm next ExpandTerm/Error

Figure 11. Grammar for interrupted primitives

PrimitiveLambda ::= primitive-lambda (! ’malformed) renames (? ExpandTerm)

PrimitiveIf ::= primitive-if (! ’malformed) next (? ExpandTerm ’test) next (? ExpandTerm ’then)
next (? ExpandTerm ’else)

Figure 12. Grammar with error annotations
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• A potentially interrupted subexpansion is either interrupted and
ends the event stream, or it completes successfully and the event
stream continues normally.

Naturally, we use a macro to elaborate the annotated grammar
into the error-handling grammar. This is a nontrivial macro, and we
made mistakes, but we were able to debug our mistakes using an
earlier version of the macro stepper itself.

5.5 The Middle End: Hiding Macros
Once the back end has created a derivation structure, the macro
debugger processes it with the user-specified macro hiding policy
to get a new derivation structure. The user can change the policy
many times during the debugging session. The macro debugger
retains the original derivation, so updating the display involves
only redoing the tree surgery and re-running the front end, which
produces the rewriting sequence.

Conceptually, a macro hiding policy is simply a predicate on
macro derivations. In practice, the user of the debugger controls the
macro hiding policy by designating modules and particular macros
as opaque or transparent. The debugger also provides named col-
lections of modules, such as “mzscheme primitives,” that can be
hidden as a group. Policies may also contain more complicated pro-
visions, and we are still exploring mechanisms for specifying these
policies. We expect that time and user feedback will be necessary
to find the best ways of building policies.

We refer to the original derivation as the true derivation, and the
one produced by applying the macro policy as the synthetic deriva-
tion. The datatype of synthetic derivations contains an additional
variant of node that does not correspond to any primitive syntactic
form. This node contains a list of subterm expansions, where each
subterm expansion consists of a derivation structure and a path rep-
resenting the context of the subterm in the node’s original syntax.

The middle end constructs the synthetic derivation by walking
the true derivation and applying the policy predicate to every macro
step. When the policy judges a macro step opaque, the debugger
hides that step and the derivation for the macro’s result, replacing
the macro node with a synthetic node. The debugger then searches
for expanded subterms within the hidden derivation. While search-
ing through the subterms, it keeps track of the path through the
opaque term to the subterms. When it finds an expanded subterm,
it adds the derivation for the subterm’s expansion, together with the
path to that subterm, to the synthetic node.

Figure 13 illustrates one step of the macro hiding process. Sup-
pose that the expansion of let/cc is marked as hidden. The de-
bugger searches through the hidden derivation for subderivations
corresponding to subterms of the opaque term. In the example from
the figure, there is no subderivation for k, but there is a subderiva-
tion for e1 . The macro hiding pass produces a new derivation with
a synthetic node containing the derivation of e1 and the path to e1
in the original term. In this case, e1 can be reached in the term
(let/cc k e1) through the path (-- -- []).

If the expansion of e1 involves other opaque macros, then the
debugger processes the derivation of e1 and places its correspond-
ing synthetic derivation in the list of subterm derivations instead.

As a side benefit, macro hiding enables the debugger to detect
a common beginner mistake: putting multiple copies of an input
expression in the macro’s output. If macro hiding produces a list of
paths with duplicates (or more generally, with overlapping paths),
the debugger reports an error to the programmer.
Engineering note 1: Macro hiding is complicated slightly by the
presence of renaming steps. When searching for derivations for
subterms, if the macro hider encounters a renaming step, it must
also search for derivations for any subterms of the renamed term
that correspond to subterms of the original term.

Engineering note 2: Performing macro hiding on the full lan-
guage is additionally complicated by internal definition blocks.
PLT Scheme partially expands the contents of a block to expose
internal definitions, then transforms the block into a letrec ex-
pression and finishes handling the block by expanding the interme-
diate letrec expression.10 Connecting the two passes of expansion
for a particular term poses significant engineering problems to the
construction of the debugger.

5.6 The Front End: Rewriting Steps
Programmers think of macro expansion as a term rewriting process,
where macro uses are the redexes and primitive syntactic forms are
the contexts. The front end of the debugger displays the process
of macro expansion as a reduction sequence. More precisely, the
debugger displays one rewriting step at a time, where each step
consists of the term before the step and the term after the step,
separated by an explanatory note.

The macro stepper produces the rewriting steps from the deriva-
tion produced by the middle end, which contains three sorts of
derivation node. A macro step (mrule) node corresponds to a
rewriting step, followed of course by the steps generated by the
derivation for the macro’s result. A primitive node generates rewrit-
ing steps for the renaming of bound variables, and it also generates
rewriting steps from the expansion of its subterms. These rewrit-
ing steps occur in the context of the primitive form, with all of the
previous subterms replaced with the results of their expansions.

For example, given subderivations test, then, and else for the
three subterms of an if expression, we can generate the reduction
sequence for the entire expression. We simply generate all the
reductions for the first derivation and plug them into the original
context. We build the next context by filling the first hole with the
expanded version of the first subterm, and so on.

Opaque macros also act as expansion contexts. The synthetic
nodes that represent opaque macros contain derivations paired with
paths into the macro use’s term. The paths provide the location of
the holes for the contexts, and the debugger generates steps using
the subderivations just as for primitive forms.

6. Conclusion
Despite the ever increasing complexity of Scheme’s syntactic ab-
straction system, Scheme implementations have failed to provide
adequate tools for stepping through macro expansions. Beyond the
technical challenges that we have surmounted to implement our
macro stepper, there are additional theoretical challenges in prov-
ing its correctness. Macro expansion is a complex process that thus
far lacks a simple reduction semantics. We have therefore based our
macro stepper on a natural semantics, with an ad hoc translation of
derivations to reduction sequences.

First experiences with the alpha release of the debugger suggest
that it is a highly useful tool, both for experts and novice macro
developers. We intend to release the debugger to the wider Scheme
community soon and expect to refine it based on the community’s
feedback.
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