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Abstract
Static and dynamic type systems have well-known strengths and
weaknesses, and each is better suited for different programming
tasks. There have been many efforts to integrate static and dynamic
typing and thereby combine the benefits of both typing disciplines
in the same language. The flexibility of static typing can be im-
proved by adding a type Dynamic and a typecase form. The safety
and performance of dynamic typing can be improved by adding
optional type annotations or by performing type inference (as in
soft typing). However, there has been little formal work on type
systems that allow a programmer-controlled migration between dy-
namic and static typing. Thatte proposed Quasi-Static Typing, but
it does not statically catch all type errors in completely annotated
programs. Anderson and Drossopoulou defined a nominal type sys-
tem for an object-oriented language with optional type annotations.
However, developing a sound, gradual type system for functional
languages with structural types is an open problem.
In this paper we present a solution based on the intuition that the
structure of a type may be partially known/unknown at compile-
time and the job of the type system is to catch incompatibilities
between the known parts of types. We define the static and dynamic
semantics of a λ-calculus with optional type annotations and we
prove that its type system is sound with respect to the simply-typed
λ-calculus for fully-annotated terms. We prove that this calculus is
type safe and that the cost of dynamism is “pay-as-you-go”.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs— Type structure

General Terms Languages, Performance, Theory

Keywords static and dynamic typing, optional type annotations

1. Introduction
Static and dynamic typing have different strengths, making them
better suited for different tasks. Static typing provides early error
detection, more efficient program execution, and better documen-
tation, whereas dynamic typing enables rapid development and fast
adaptation to changing requirements.
The focus of this paper is languages that literally provide static and
dynamic typing in the same program, with the programmer control-
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ling the degree of static checking by annotating function parameters
with types, or not. We use the term gradual typing for type systems
that provide this capability. Languages that support gradual typing
to a large degree include Cecil [8], Boo [10], extensions to Visual
Basic.NET and C# proposed by Meijer and Drayton [26], and ex-
tensions to Java proposed by Gray et al. [17], and the Bigloo [6, 36]
dialect of Scheme [24]. The purpose of this paper is to provide a
type-theoretic foundation for languages such as these with gradual
typing.
There are numerous other ways to combine static and dynamic typ-
ing that fall outside the scope of gradual typing. Many dynamically
typed languages have optional type annotations that are used to im-
prove run-time performance but not to increase the amount of static
checking. Common LISP [23] and Dylan [12, 37] are examples of
such languages. Similarly, the Soft Typing of Cartwright and Fa-
gan [7] improves the performance of dynamically typed languages
but it does not statically catch type errors. At the other end of the
spectrum, statically typed languages can be made more flexible by
adding a Dynamic type and typecase form, as in the work by Abadi
et al. [1]. However, such languages do not allow for programming
in a dynamically typed style because the programmer is required to
insert coercions to and from type Dynamic.
A short example serves to demonstrate the idea of gradual typing.
Figure 1 shows a call-by-value interpreter for an applied λ-calculus
written in Scheme extended with gradual typing and algebraic data
types. The version on the left does not have type annotations, and
so the type system performs little type checking and instead many
tag-tests occur at run time.
As development progresses, the programmer adds type annotations
to the parameters of interp, as shown on the right side of Figure 1,
and the type system provides more aid in detecting errors. We use
the notation ? for the dynamic type. The type system checks that
the uses of env and e are appropriate: the case analysis on e is
fine and so is the application of assq to x and env. The recursive
calls to interp also type check and the call to apply type checks
trivially because the parameters of apply are dynamic. Note that
we are still using dynamic typing for the value domain of the object
language. To obtain a program with complete static checking, we
would introduce a datatype for the value domain and use that as the
return type of interp.

Contributions We present a formal type system that supports
gradual typing for functional languages, providing the flexibility
of dynamically typed languages when type annotations are omitted
by the programmer and providing the benefits of static checking
when function parameters are annotated. These benefits include
both safety and performance: type errors are caught at compile-time
and values may be stored in unboxed form. That is, for statically
typed portions of the program there is no need for run-time tags
and tag checking.
We introduce a calculus named λ?

→ and define its type system (Sec-
tion 2). We show that this type system, when applied to fully an-

81



(define interp
(λ (env e)

(case e
[(Var ,x) (cdr (assq x env))]
[(Int ,n) n]
[(App ,f ,arg) (apply (interp env f) (interp env arg))]
[(Lam ,x ,e) (list x e env)]
[(Succ ,e) (succ (interp env e))])))

(define apply
(λ (f arg)

(case f
[(,x ,body ,env)
(interp (cons (cons x arg) env) body)]

[,other (error ”in application, expected a closure”)])))

(type expr (datatype (Var ,symbol)
(Int ,int)
(App ,expr ,expr)
(Lam ,symbol ,expr)
(Succ ,expr)))

(type envty (listof (pair symbol ?)))

(define interp
(λ ((env : envty) (e : expr))

(case e
[(Var ,x) (cdr (assq x env))]
[(Int ,n) n]
[(App ,f ,arg) (apply (interp env f) (interp env arg))]
[(Lam ,x ,e) (list x e env)]
[(Succ ,e) (succ (interp env e))])))

(define apply
(λ (f arg)

(case f
[(,x ,body ,env)
(interp (cons (cons x arg) env) body)]

[,other (error ”in application, expected a closure”)])))

Figure 1. An example of gradual typing: an interpreter with varying amounts of type annotations.

notated terms, is equivalent to that of the simply-typed lambda cal-
culus (Theorem 1). This property ensures that for fully-annotated
programs all type errors are caught at compile-time. Our type sys-
tem is the first gradual type system for structural types to have this
property. To show that our approach to gradual typing is suitable
for imperative languages, we extend λ?

→ with ML-style references
and assignment (Section 4).
We define the run-time semantics of λ?

→ via a translation to a
simply-typed calculus with explicit casts, λ〈τ〉→ , for which we de-
fine a call-by-value operational semantics (Section 5). When ap-
plied to fully-annotated terms, the translation does not insert casts
(Lemma 4), so the semantics exactly matches that of the simply-
typed λ-calculus. The translation preserves typing (Lemma 3) and
λ〈τ〉→ is type safe (Lemma 8), and therefore λ?

→ is type safe: if eval-
uation terminates, the result is either a value of the expected type
or a cast error, but never a type error (Theorem 2).
On the way to proving type safety, we prove Lemma 5 (Canonical
Forms), which is of particular interest because it shows that the
run-time cost of dynamism in λ?

→ can “pay-as-you-go”. Run-time
polymorphism is restricted to values of type ?, so for example,
a value of type int must actually be an integer, whereas a value
of type ? may contain an integer or a Boolean or anything at all.
Compilers for λ?

→ may use efficient, unboxed, representations for
values of ground and function type, achieving the performance
benefits of static typing for the parts of programs that are statically
typed.
The proofs of the lemmas and theorems in this paper were writ-
ten in the Isar proof language [28, 42] and verified by the Isabelle
proof assistant [29]. We provide proof sketches in this paper and
the full proofs are available in the companion technical report [39].
The statements of the definitions (including type systems and se-
mantics), lemmas, propositions, and theorems in this paper were
automatically generated from the Isabelle files. Free variables that
appear in these statements are universally quantified.

2. Introduction to Gradual Typing
The gradually-typed λ-calculus, λ?

→, is the simply-typed λ-calculus
extended with a type ? to represent dynamic types. We present grad-
ual typing in the setting of the simply-typed λ-calculus to reduce
unnecessary distractions. However, we intend to show how gradual

typing interacts with other common language features, and as a first
step combine gradual typing with ML-style references in Section 4.

Syntax of the Gradually-Typed Lambda Calculus e ∈ λ?
→

Variables x ∈ X
Ground Types γ ∈ G
Constants c ∈ C
Types τ ::= γ | ? | τ → τ
Expressions e ::= c | x | λx :τ. e | e e

λx. e ≡ λx :?. e

A procedure without a parameter type annotation is syntactic sugar
for a procedure with parameter type ?.
The main idea of our approach is the notion of a type whose struc-
ture may be partially known and partially unknown. The unknown
portions of a type are indicated by ?. So, for example, the type
number ∗ ? is the type of a pair whose first element is of type
number and whose second element has an unknown type. To pro-
gram in a dynamically typed style, omit type annotations on pa-
rameters; they are by default assigned the type ?. To enlist more
help from the type checker, add type annotations, possibly with ?
occurring inside the types to retain some flexibility.
The job of the static type system is to reject programs that have
inconsistencies in the known parts of types. For example, the pro-
gram

((λ (x : number) (succ x)) #t) ;; reject

should be rejected because the type of #t is not consistent with
the type of the parameter x, that is, boolean is not consistent with
number. On the other hand, the program

((λ (x) (succ x)) #t) ;; accept

should be accepted by the type system because the type of x is
considered unknown (there is no type annotation) and therefore not
within the realm of static checking. Instead, the type error will be
caught at run-time (as is typical of dynamically typed languages),
which we describe in Section 5.
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As usual things become more interesting with first class proce-
dures. Consider the following example of mapping a procedure
over a list.

map : (number→ number) ∗ number list→ number list
(map (λ (x) (succ x)) (list 1 2 3)) ;; accept

The map procedure is expecting a first argument whose type
is number→ number but the argument (λ(x) (succ x)) has type
?→ number. We would like the type system to accept this pro-
gram, so how should we define consistency for procedure types?
The intuition is that we should require the known portions of the
two types to be equal and ignore the unknown parts. There is a use-
ful analogy with the mathematics of partial functions: two partial
functions are consistent when every elements that is in the domain
of both functions is mapped to the same result. This analogy can be
made formal by considering types as trees [32].
→

dom

��

cod

&&LLLLLLLLLL →

dom

��

cod

##GGGGGGGGG

number number number ?

Trees can be represented as partial functions from paths to node
labels, where a path is a sequence of edge labels: [l1, . . . , ln]. The
above two trees are the following two partial functions f and g. We
interpret unknown portions of a type simply as places where the
partial function is undefined. So, for example, g is undefined for
the path [cod].

f([]) =→
f([dom]) = number

f([cod]) = number

g([]) =→
g([dom]) = number

The partial functions f and g are consistent because they produce
the same output for the inputs [] and [dom].
We axiomatize the consistency relation∼ on types with the follow-
ing definition.

Type Consistency τ ∼ τ

(CREFL) τ ∼ τ (CFUN)
σ1 ∼ τ1 σ2 ∼ τ2

σ1→ σ2 ∼ τ1→ τ2

(CUNR) τ ∼ ? (CUNL) ? ∼ τ

The type consistency relation is reflexive and symmetric but not
transitive (just like consistency of partial functions).

Proposition 1.

• τ ∼ τ

• If σ ∼ τ then τ ∼ σ.

• ¬ (∀ τ1 τ2 τ3. τ1 ∼ τ2 ∧ τ2 ∼ τ3 −→ τ1 ∼ τ3)

Our gradual type system is shown in Figure 2. The environment
Γ is a function from variables to optional types (bτc or ⊥). The
type system is parameterized on a signature ∆ that assigns types
to constants. The rules for variables, constants, and functions are
standard. The first rule for function application (GAPP1) handles
the case when the function type is unknown. The argument may
have any type and the resulting type of the application is unknown.
The second rule for function application (GAPP2) handles when

Figure 2. A Gradual Type System

Γ `G e : τ

(GVAR)
Γ x = bτc
Γ `G x : τ

(GCONST)
∆ c = τ

Γ `G c : τ

(GLAM)
Γ(x 7→ σ) `G e : τ

Γ `G λ x:σ. e : σ→ τ

(GAPP1)
Γ `G e1 : ? Γ `G e2 : τ2

Γ `G e1 e2 : ?

(GAPP2)

Γ `G e1 : τ → τ ′

Γ `G e2 : τ2 τ2 ∼ τ

Γ `G e1 e2 : τ ′

the function type is known and allows an argument whose type is
consistent with the function’s parameter type.

Relation to the untyped λ-calculus We would like our gradual
type system to accept all terms of the untyped λ-calculus (all unan-
notated terms), but it is not possible to simultaneously achieve this
and provide type safety for fully-annotated terms. For example,
suppose there is a constant succ with type number→ number. The
term (succ ”hi”) has no type annotations but it is also fully anno-
tated because there are no function parameters to annotate. The type
system must either accept or reject this program. We choose to re-
ject. Of course, if succ were given the type ?→ ? then (succ ”hi”)
would be accepted. In any event, our gradual type system provides
the same expressiveness as the untyped λ-calculus. The following
translation converts any λ-term into an observationally equivalent
well-typed term of λ?

→.

JcK = c

JxK = x

Jλx.eK = λx.JeK
Je1 e2K = ((λx.x)Je1K)Je2K

Relation to the simply-typed λ-calculus Let λ→ denote the terms
of the simply-typed λ-calculus and let Γ `→ e : τ stand for the
standard typing judgment of the simply-typed λ-calculus. For terms
in λ→ our gradual type system is equivalent to simple typing.

Theorem 1 (Equivalence to simple typing for fully-annotated
terms). If e ∈ λ→ then ∅ `G e : τ = ∅ `→ e : τ.

Proof Sketch. The rules for our gradual type system are the same
as for the STLC if one removes the rules that mention ?. The
type compatibility relation collapses to type equality once all rules
involving ? are removed.

A direct consequence of this equivalence is that our gradual type
system catches the same static errors as the type system for λ→.

Corollary 1 (Full static error detection for fully-annotated terms).
If e ∈ λ→ and @ τ. ∅ `→ e : τ then @ τ ′. ∅ `G e : τ ′. (This is just the
contrapositive of soundness.)

Scheme and Functional Programming, 2006 83



Before describing the run-time semantics of λ?
→ we compare our

type system for λ?
→ with an alternative design based on subtyping.

3. Comparison with Quasi-Static Typing
Our first attempt to define a gradual type system was based on
Thatte’s quasi-static types [40]. Thatte uses a standard subtyping
relation <: with a top type Ω to represent the dynamic type. As be-
fore, the meta-variable γ ranges over ground types such as number
and boolean.

Subtyping rules. τ <: τ ′

γ <: γ τ <: Ω

σ1 <: τ1 τ2 <: σ2

τ1 → τ2 <: σ1 → σ2

The quasi-static type system includes the usual subsumption rule.

QSUB
Γ ` e : τ τ <: σ

Γ ` e : σ

Subsumption allows programs such as the following to type check
by allowing implicit up-casts. The value #t of type boolean is up-
cast to Ω, the type of the parameter x.

((λ (x) ...) #t) ;; ok, boolean <: Ω

However, the subsumption rule will not allow the following pro-
gram to type check. The addition operator expects type number but
gets an argument of type Ω.

(λ (x) (succ x))

Thatte’s solution for this is to also allow an implicit down-cast in
the (QAPP2) rule for function application.

(QAPP2)
Γ ` e1 : σ → σ′ Γ ` e2 : τ σ <: τ

Γ ` (e1 e2) : σ′

Unfortunately, the subsumption rule combined with (QAPP2) al-
lows too many programs to type check for our taste. For example,
we can build a typing derivation for the following program, even
though it was rejected by our gradual type system.

((λ (x : number) (succ x)) #t)

The subsumption rule allows #t to be implicitly cast to Ω and then
the above rule for application implicitly casts Ω down to number.
To catch errors such as these, Thatte added a second phase to the
type system called plausibility checking. This phase rewrites the
program by collapsing sequences of up-casts and down-casts and
signals an error if it encounters a pair of casts that together amount
to a “stupid cast”[22], that is, casts that always fail because the
target is incompatible with the subject.
Figure 3 shows Thatte’s Quasi-Static type system. The judgment
Γ ` e ⇒ e′ : τ inserts up-casts and down-casts and the judgment
e  e′ collapses sequences of casts and performs plausibility
checking. The type system is parameterized on the function ∆
mapping constants to types. The environment Γ is a function from
variables to optional types (bτc or ⊥).
Subsumption rules are slippery, and even with the plausibility
checks the type system fails to catch many errors. For example,
there is still a derivation for the program

((λ (x : number) (succ x)) #t)

The reason is that both the operator and operand may be implicitly
up-cast to Ω. The rule (QAPP1) then down-casts the operator to
Ω → Ω. Plausibility checking succeeds because there is a greatest

Figure 3. Thatte’s Quasi-Static Typing.

Γ ` e⇒ e′ : τ

(QVAR)
Γ x = bτc

Γ ` x⇒ x : τ

(QCONST) ∆ c = τ
Γ ` c⇒ c : τ

(QLAM)
Γ, x : τ ` e⇒ e′ : σ

Γ ` (λx :τ. e)⇒ (λx :τ. e′) : τ → σ

(QSUB) Γ ` e⇒ e′ : τ τ <: σ

Γ ` e⇒ e′ ↑στ : σ

(QAPP1)

Γ ` e1 ⇒ e′1 : Ω
Γ ` e2 ⇒ e′2 : τ

Γ ` (e1 e2)⇒ ((e′1 ↓Ωτ→Ω) e′2) : Ω

(QAPP2)

Γ ` e1 ⇒ e′1 : σ → σ′

Γ ` e2 ⇒ e′2 : τ σ <: τ

Γ ` (e1 e2)⇒ (e′1 (e′2 ↓τσ)) : σ′

e e′

e ↓ττ e e ↑ττ e

e ↓τσ↓σµ e ↓τµ e ↑σµ↑τσ e ↑τµ

µ = τ u ν

e ↑στ ↓σν e ↓τµ↑νµ
6 ∃µ.µ = τ u ν

e ↑στ ↓σν wrong

lower bound of number→ number and Ω → Ω, which is Ω →
number. So the quasi-static system fails to statically catch the type
error.
As noted by Oliart [30], Thatte’s quasi-static type system does not
correspond to his type checking algorithm (Theorem 7 of [40] is in-
correct). Thatte’s type checking algorithm does not suffer from the
above problems because the algorithm does not use the subsump-
tion rule and instead performs all casting at the application rule,
disallowing up-casts to Ω followed by arbitrary down-casts. Oliart
defined a simple syntax-directed type system that is equivalent to
Thatte’s algorithm, but did not state or prove any of its properties.
We initially set out to prove type safety for Oliart’s subtype-based
type system, but then realized that the consistency relation provides
a much simpler characterization of when implicit casts should be
allowed.
At first glance it may seem odd to use a symmetric relation such
as consistency instead of an anti-symmetric relation such as sub-
typing. There is an anti-symmetric relation that is closely related to
consistency, the usual partial ordering relation for partial functions:
f v g if the graph of f is a subset of the graph of g. (Note that the
direction is flipped from that of the subtyping relation <:, where
greater means less information.) A cast from τ to σ, where σ v τ ,
always succeeds at run-time as we are just hiding type information
by replacing parts of a type with ?. On the other hand, a cast from
σ to τ may fail because the run-time type of the value may not be
consistent with τ . The main difference between v and <: is that
v is covariant for the domain of a procedure type, whereas <: is
contra-variant for the domain of a procedure type.

84 Scheme and Functional Programming, 2006



Figure 4. Type Rules for References

Γ `G e : τ

(GREF)
Γ `G e : τ

Γ `G ref e : ref τ

(GDEREF1)
Γ `G e : ?
Γ `G !e : ?

(GDEREF2)
Γ `G e : ref τ

Γ `G !e : τ

(GASSIGN1)
Γ `G e1 : ? Γ `G e2 : τ

Γ `G e1← e2 : ref τ

(GASSIGN2)
Γ `G e1 : ref τ Γ `G e2 : σ σ ∼ τ

Γ `G e1← e2 : ref τ

4. Gradual Typing and References
It is often challenging to integrate type system extensions with
imperative features such as references with assignment. In this
section we extend the calculus to include ML-style references. The
following grammar shows the additions to the syntax.

Adding references to λ?
→

Types τ ::= . . . | ref τ
Expressions e ::= . . . | ref e | !e | e← e

The form ref e creates a reference cell and initializes it with
the value that results from evaluating expression e. The derefer-
ence form !e evaluates e to the address of a location in memory
(hopefully) and returns the value stored there. The assignment form
e ← e stores the value form the right-hand side expression in the
location given by the left-hand side expression.
Figure 4 shows the gradual typing rules for these three new con-
structs. In the (GASSIGN2) we allow the type of the right-hand
side to differ from the type in the left-hand’s reference, but require
the types to be compatible. This is similar to the (GAPP2) rule for
function application.
We do not change the definition of the consistency relation, which
means that references types are invariant with respect to consis-
tency. The reflexive axiom τ ∼ τ implies that ref τ ∼ ref τ .
The situation is analogous to that of the combination of references
with subtyping [32]: allowing variance under reference types com-
promises type safety. The following program demonstrates how a
covariant rule for reference types would allow type errors to go un-
caught by the type system.

let r1 = ref (λ y. y) in
let r2 : ref ? = r1 in

r2 ← 1;
!r1 2

The reference r1 is initialized with a function, and then r2 is aliased
to r1, using the covariance to allow the change in type to ref ?. We
can then write an integer into the cell pointed to by r2 (and by r1).
The subsequent attempt to apply the contents of r1 as if it were a
function fails at runtime.

5. Run-time semantics
We define the semantics for λ?

→ in two steps. We first define a cast
insertion translation from λ?

→ to an intermediate language with
explicit casts which we call λ〈τ〉→ . We then define a call-by-value
operational semantics for λ〈τ〉→ . The explicit casts have the syntactic
form 〈τ〉e where τ is the target type. When e evaluates to v, the cast
will check that the type of v is consistent with τ and then produce a
value based on v that has the type τ . If the type of v is inconsistent
with τ , the cast produces a CastError. The intuition behind this
kind of cast is that it reinterprets a value to have a different type
either by adding or removing type information.
The syntax of λ〈τ〉→ extends that of λ?

→ by adding a cast expression.

Syntax of the intermediate language. e ∈ λ〈τ〉→

Expressions e ::= . . . | 〈τ〉e

5.1 Translation to λ〈τ〉→ .

The cast insertion judgment, defined in Figure 5, has the form Γ `
e⇒ e′ : τ and mimics the structure of our gradual typing judgment
of Figure 2. It is trivial to show that these two judgments accept
the same set of terms. We presented the gradual typing judgment
separately to provide an uncluttered specification of well-typed
terms. In Figure 5, the rules for variables, constants, and functions
are straightforward. The first rule for application (CAPP1) handles
the case when the function has type ? and inserts a cast to τ2 → ?
where τ2 is the argument’s type. The second rule for application
(CAPP2) handles the case when the function’s type is known and
the argument type differs from the parameter type, but is consistent.
In this case the argument is cast to the parameter type τ . We could
have instead cast the function; the choice was arbitrary. The third
rule for application (CAPP3) handles the case when the function
type is known and the argument’s type is identical to the parameter
type. No casts are needed in this case. The rules for reference
assignment are similar to the rules for application. However, for
CASSIGN2 the choice to cast the argument and not the reference
is because we need references to be invariant to preserve type
soundness.
Next we define a type system for the intermediate language λ〈τ〉→ .
The typing judgment has the form Γ|Σ ` e : τ . The Σ is a store
typing: it assigns types to memory locations. The type system,
defined in Figure 6, extends the STLC with a rule for explicit
casts. The rule (TCAST) requires the expression e to have a type
consistent with the target type τ .
The inversion lemmas for λ〈τ〉→ are straightforward.

Lemma 1 (Inversion on typing rules.).

1. If Γ | Σ ` x : τ then Γ x = bτc.
2. If Γ | Σ ` c : τ then ∆ c = τ.

3. If Γ | Σ ` λ x:σ. e : τ then ∃ τ ′. τ = σ→ τ ′.

4. If Γ | Σ ` e1 e2 : τ ′ then ∃ τ. Γ | Σ ` e1 : τ → τ ′∧ Γ | Σ ` e2 : τ.

5. If Γ | Σ ` 〈σ〉 e : τ then ∃ τ ′. Γ | Σ ` e : τ ′∧ σ = τ ∧ τ ′∼ σ.

6. If Γ | Σ ` ref e : ref τ then Γ | Σ ` e : τ.

7. If Γ | Σ ` !e : τ then Γ | Σ ` e : ref τ.

8. If Γ | Σ ` e1← e2 : ref τ then Γ | Σ ` e1 : ref τ ∧ Γ | Σ ` e2 : τ.
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Figure 5. Cast Insertion

Γ ` e⇒ e′ : τ

(CVAR)
Γ x = bτc

Γ ` x⇒ x : τ

(CCONST)
∆ c = τ

Γ ` c⇒ c : τ

(CLAM)
Γ(x 7→ σ) ` e⇒ e ′ : τ

Γ ` λ x:σ. e⇒ λ x:σ. e ′ : σ→ τ

(CAPP1)
Γ ` e1⇒ e ′1 : ? Γ ` e2⇒ e ′2 : τ2

Γ ` e1 e2⇒ (〈τ2→ ?〉 e ′1) e ′2 : ?

(CAPP2)

Γ ` e1⇒ e ′1 : τ → τ ′

Γ ` e2⇒ e ′2 : τ2 τ2 6= τ τ2 ∼ τ

Γ ` e1 e2⇒ e ′1 (〈τ〉 e ′2) : τ ′

(CAPP3)

Γ ` e1⇒ e ′1 : τ → τ ′

Γ ` e2⇒ e ′2 : τ

Γ ` e1 e2⇒ e ′1 e ′2 : τ ′

(CREF)
Γ ` e⇒ e ′ : τ

Γ ` ref e⇒ ref e ′ : ref τ

(CDEREF1)
Γ ` e⇒ e ′ : ?

Γ ` !e⇒ !(〈ref ?〉 e ′) : ?

(CDEREF2)
Γ ` e⇒ e ′ : ref τ

Γ ` !e⇒ !e ′ : τ

(CASSIGN1)
Γ ` e1⇒ e ′1 : ? Γ ` e2⇒ e ′2 : τ2

Γ ` e1← e2⇒ (〈ref τ2〉 e ′1)← e ′2 : ref τ2

(CASSIGN2)

Γ ` e1⇒ e ′1 : ref τ
Γ ` e2⇒ e ′2 : σ σ 6= τ σ ∼ τ

Γ ` e1← e2⇒ e ′1← (〈τ〉 e ′2) : ref τ

(CASSIGN3)
Γ ` e1⇒ e ′1 : ref τ Γ ` e2⇒ e ′2 : τ

Γ ` e1← e2⇒ e ′1← e ′2 : ref τ

Proof Sketch. They are proved by case analysis on the type rules.

The type system for λ〈τ〉→ is deterministic: it assigns a unique type
to an expression given a fixed environment.

Lemma 2 (Unique typing). If Γ | Σ ` e : τ and Γ | Σ ` e : τ ′ then
τ = τ ′.

Proof Sketch. The proof is by induction on the typing derivation
and uses the inversion lemmas.

The cast insertion translation, if successful, produces well-typed
terms of λ〈τ〉→ .

Lemma 3. If Γ ` e⇒ e ′ : τ then Γ | ∅ ` e ′ : τ.

Figure 6. Type system for the intermediate language λ〈τ〉→

Γ|Σ ` e : τ

(TVAR)
Γ x = bτc

Γ | Σ ` x : τ

(TCONST)
∆ c = τ

Γ | Σ ` c : τ

(TLAM)
Γ(x 7→ σ) | Σ ` e : τ

Γ | Σ ` λ x:σ. e : σ→ τ

(TAPP)
Γ | Σ ` e1 : τ → τ ′ Γ | Σ ` e2 : τ

Γ | Σ ` e1 e2 : τ ′

(TCAST)
Γ | Σ ` e : σ σ ∼ τ

Γ | Σ ` 〈τ〉 e : τ

(TREF)
Γ | Σ ` e : τ

Γ | Σ ` ref e : ref τ

(TDEREF)
Γ | Σ ` e : ref τ

Γ | Σ ` !e : τ

(TASSIGN)
Γ | Σ ` e1 : ref τ Γ | Σ ` e2 : τ

Γ | Σ ` e1← e2 : ref τ

(TLOC)
Σ l = bτc

Γ | Σ ` l : ref τ

Proof Sketch. The proof is by induction on the cast insertion deriva-
tion.

When applied to terms of λ→, the translation is the identity func-
tion, i.e., no casts are inserted. 1

Lemma 4. If ∅ ` e⇒ e ′ : τ and e ∈ λ→ then e = e ′.

Proof Sketch. The proof is by induction on the cast insertion deriva-
tion.

When applied to terms of the untyped λ-calculus, the translation in-
serts just those casts necessary to prevent type errors from occuring
at run-time, such as applying a non-function.

5.2 Run-time semantics of λ〈τ〉→ .

The following grammar describes the results of evaluation: the re-
sult is either a value or an error, where values are either a simple
value (variables, constants, functions, and locations) or a simple
value enclosed in a single cast, which serves as a syntacical repre-
sentation of boxed values.

1 This lemma is for closed terms (this missing Γ means an empty envi-
ronment). A similar lemma is true of open terms, but we do not need the
lemma for open terms and the statement is more complicated because there
are conditions on the environment.
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Values, Errors, and Results

Locations l ∈ L
Simple Values s ∈ S ::= x | c | λx : τ.e | l
Values v ∈ V ::= s | 〈?〉s
Errors ε ::= CastError | TypeError | KillError
Results r ::= v | ε

It is useful to distinguish two different kinds of run-time type
errors. In weakly typed languages, type errors result in undefined
behavior, such as causing a segmentation fault or allowing a hacker
to create a buffer overflow. We model this kind of type error with
TypeError. In strongly-typed dynamic languages, there may still
be type errors, but they are caught by the run-time system and do
not cause undefined behavior. They typically cause the program to
terminate or else raise an exception. We model this kind of type
error with CastError. The KillError is a technicality pertaining to
the type safety proof that allows us to prove a form of “progress”
in the setting of a big-step semantics.
We define simple function values (SimpleFunVal) to contain lambda
abstractions and functional constants (such as succ), and function
values (FunVal) include simple function values and simple function
values cast to ?.

As mentioned in Section 1, the Canonical Forms Lemma is of
particular interest due to its implications for performance. When
an expression has either ground or function type (not ?) the kind
of resulting value is fixed, and a compiler may use an efficient
unboxed representation. For example, if an expression has type
int, then it will evaluate to a value of type int (by the forthcoming
Soundness Lemma 8) and then the Canonical Forms Lemma tells
us that the value must be an integer.

Lemma 5 (Canonical Forms).

• If ∅ | Σ ` v : int and v ∈ V then ∃ n. v = n.

• If ∅ | Σ ` v : bool and v ∈ V then ∃ b. v = b.

• If ∅ | Σ ` v : ? and v ∈ V then ∃ v ′. v = 〈?〉 v ′∧ v ′∈ S.

• If ∅ | Σ ` v : τ → τ ′ and v ∈ V then v ∈ SimpleFunVal.

• If ∅ | Σ ` v : ref τ and v ∈ V then ∃ l. v = l ∧ Σ l = bτc.

Proof Sketch. They are proved using the inversion lemmas and case
analysis on values.

We define the run-time semantics for λ〈τ〉→ in big-step style with
substitution and not environments. Substitution, written [x := e]e,
is formalized in the style of Curry [3], where bound variables are α-
renamed during substitution to avoid the capture of free variables.
The evaluation judgment has the form e ↪→n r, where e evaluates
to the result r with a derivation depth of n. The derivation depth is
used to force termination so that derivations can be constructed for
otherwise non-terminating programs [11]. The n-depth evaluation
allows Lemma 8 (Soundness) to distinguish between terminating
and non-terminating programs. We will say more about this when
we get to Lemma 8.

The evaluation rules, shown in Figures 7 and 8, are the standard
call-by-value rules for the λ-calculus [33] with additional rules for
casts and a special termination rule. We parameterize the seman-
tics over the function δ which defines the behavior of functional
constants and is used in rule (EDELTA). The helper function unbox
removes an enclosing cast from a value, if there is one.

unbox s = s
unbox (〈τ〉 s) = s

The evaluation rules treat the cast expression like a boxed, or
tagged, value. It is straightforward to define a lower-level semantics
that explicitly tags every value with its type (the full type, not just
the top level constructor) and then uses these type representations
instead of the typing judgment ∅ | ∅ ` unbox v : τ , as in the rule
(ECSTG).
There is a separate cast rule for each kind of target type. The
rule (ECSTG) handles the case of casting to a ground type. The
cast is removed provided the run-time type exactly matches the
target type. The rule (ECSTF) handles the case of casting to a
function type. If the run-time type is consistent with the target
type, the cast is removed and the inner value is wrapped inside a
new function that inserts casts to produce a well-typed value of
the appropriate type. This rule is inspired by the work on semantic
casts [13, 14, 15], though the rule may look slightly different
because the casts used in this paper are annotated with the target
type only and not also with the source type. The rule (ECSTR)
handles the case of casting to a reference type. The run-time type
must exactly match the target type. The rule (ECSTU) handles the
case of casting to ? and ensures that nested casts are collapsed to a
single cast. The rule (ECSTE) handles the case when the run-time
type is not consistent with the target type and produces a CastError.
Because the target types of casts are static, the cast form could be
replaced by a cast for each type, acting as injection to ? and projec-
tion to ground and function types. However, this would complicate
the rules, especially the rule for casting to a function type.
The rule (EKILL) terminates evaluation when the derivation depth
counter reaches zero.

5.3 Examples

Consider once again the following program and assume the succ
constant has the type number→ number.

((λ (x) (succ x)) #t)

The cast insertion judgement transforms this term into the follow-
ing term.

((λ (x : ?) (succ 〈number〉x)) 〈?〉#t)

Evaluation then proceeds, applying the function to its argument,
substituting 〈?〉#t for x.

(succ 〈number〉〈?〉#t)

The type of #t is boolean, which is not consistent with number, so
the rule (ECSTE) applies and the result is a cast error.

CastError

Next, we look at an example that uses first-class functions.

((λ (f : ?→ number) (f 1))
(λ (x : number) (succ x)))

Cast insertion results in the following program.

((λ (f : ?→ number) (f 〈?〉1))
〈?→ number〉(λ (x : number) (succ x)))

We apply the cast to the function, creating a wrapper function.

((λ (f : ?→ number) (f 〈?〉1))
(λ (z : ?) 〈number〉((λ (x : number) (succ x)) 〈number〉z)))

Function application results in the following
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Figure 7. Evaluation

e|µ ↪→n r|µ
Casting

(ECSTG)
e | µ ↪→n v | µ ′ ∅ | Σ ` unbox v : γ

〈γ〉 e | µ ↪→n+1 unbox v | µ ′

(ECSTF)

e | µ ↪→n v | µ ′ ∅ | Σ ` unbox v : τ → τ ′

τ → τ ′∼ σ→ σ ′ z = maxv v + 1
〈σ→ σ ′〉 e | µ ↪→n+1 λ z:σ. (〈σ ′〉 (unbox v (〈τ〉 z))) | µ ′

(ECSTR)
e | µ ↪→n v | µ ′ ∅ | Σ ` unbox v : ref τ

〈ref τ〉 e | µ ↪→n+1 unbox v | µ ′

(ECSTU)
e | µ ↪→n v | µ ′

〈?〉 e | µ ↪→n+1 〈?〉 unbox v | µ ′

Functions and constants

(ELAM)
0 < n

λ x:τ . e | µ ↪→n λ x:τ . e | µ

(EAPP)

e1 | µ1 ↪→n λ x:τ . e3 | µ2

e2 | µ2 ↪→n v2 | µ3

[x:=v2]e3 | µ3 ↪→n v3 | µ4

e1 e2 | µ1 ↪→n+1 v3 | µ4

(ECONST)
0 < n

c | µ ↪→n c | µ

(EDELTA)
e1 | µ1 ↪→n c1 | µ2 e2 | µ2 ↪→n c2 | µ3

e1 e2 | µ1 ↪→n+1 δ c1 c2 | µ3

References

(EREF)
e | µ ↪→n v | µ ′ l /∈ dom µ ′

ref e | µ ↪→n+1 l | µ ′(l 7→ v)

(EDEREF)
e | µ ↪→n l | µ ′ µ ′ l = bvc

!e | µ ↪→n+1 v | µ ′

(EASSIGN)
e1 | µ1 ↪→n l | µ2 e2 | µ2 ↪→n v | µ3

e1← e2 | µ1 ↪→n+1 l | µ3(l 7→ v)

(ELOC)
0 < n

l | µ ↪→n l | µ

Figure 8. Evaluation (Errors)

(ECSTE)

e | µ ↪→n v | µ ′

∅ | Σ ` unbox v : σ (σ, τ) /∈ op ∼
〈τ〉 e | µ ↪→n+1 CastError | µ ′

(EKILL) e | µ ↪→0 KillError | µ

(EVART)
0 < n

x | µ ↪→n TypeError | µ

(EAPPT)
e1 | µ ↪→n v1 | µ ′ v1 /∈ FunVal

e1 e2 | µ ↪→n+1 TypeError | µ ′

(ECSTP)
e | µ ↪→n ε | µ ′

〈τ〉 e | µ ↪→n+1 ε | µ ′

(EAPPP1)
e1 | µ ↪→n ε | µ ′

e1 e2 | µ ↪→n+1 ε | µ ′

(EAPPP2)

e1 | µ1 ↪→n v1 | µ2

v1 ∈ FunVal e2 | µ2 ↪→n ε | µ3

e1 e2 | µ1 ↪→n+1 ε | µ3

(EAPPP3)

e1 | µ1 ↪→n λ x:τ . e3 | µ2

e2 | µ2 ↪→n v2 | µ3

[x:=v2]e3 | µ3 ↪→n ε | µ4

e1 e2 | µ1 ↪→n+1 ε | µ4

(EREFP)
e | µ ↪→n ε | µ ′

ref e | µ ↪→n+1 ε | µ ′

(EDEREFP)
e | µ ↪→n ε | µ ′

!e | µ ↪→n+1 ε | µ ′

(EASSIGNP1)
e1 | µ ↪→n ε | µ ′

e1← e2 | µ ↪→n+1 ε | µ ′

(EASSIGNP2)
e1 | µ1 ↪→n l | µ2 e2 | µ2 ↪→n ε | µ3

e1← e2 | µ1 ↪→n+1 ε | µ3

(EDEREFT)
e | µ ↪→n v | µ ′ @ l. v = l
!e | µ ↪→n+1 TypeError | µ ′

(EASSIGNT)
e1 | µ ↪→n v | µ ′ @ l. v = l

e1← e2 | µ ↪→n+1 TypeError | µ ′
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((λ (z : ?) 〈number〉((λ (x : number) (succ x)) 〈number〉z)) 〈?〉1)

and then another function application gives us

〈number〉((λ (x : number) (succ x)) 〈number〉〈?〉1)

We then apply the cast rule for ground types (ECSTG).

〈number〉((λ (x : number) (succ x)) 1)

followed by another function application:

〈number〉(succ 1)

Then by (EDELTA) we have

〈number〉2

and by (ECSTG) we finally have the result

2

5.4 Type Safety

Towards proving type safety we prove the usual lemmas. First,
environment expansion and contraction does not change typing
derivations. Also, changing the store typing environment does not
change the typing derivations as long as the new store typing agrees
with the old one. The function Vars returns the free and bound
variables of an expression.

Lemma 6 (Environment Expansion and Contraction).

• If Γ | Σ ` e : τ and x /∈ Vars e then Γ(x 7→ σ) | Σ ` e : τ.

• If Γ(y 7→ ν) | Σ ` e : τ and y /∈ Vars e then Γ | Σ ` e : τ.

• If Γ | Σ ` e : τ and
V

l. If l ∈ dom Σ then Σ ′ l = Σ l. then Γ |Σ ′

` e : τ.

Proof Sketch. These properties are proved by induction on the typ-
ing derivation.

Also, substitution does not change the type of an expression.

Lemma 7 (Substitution preserves typing). If Γ(x 7→ σ) | Σ ` e : τ
and Γ | Σ ` e ′ : σ then Γ | Σ ` [x:=e ′]e : τ.

Proof Sketch. The proof is by strong induction on the size of the
expression e, using the inversion and environment expansion lem-
mas.

Definition 1. The store typing judgment, written Γ|Σ |= µ, holds
when the domains of Σ and µ are equal and when for every location
l in the domain of Σ there exists a type τ such that Γ|Σ ` µ(l) : τ .

Next we prove that n-depth evaluation for the intermediate lan-
guage λ〈τ〉→ is sound. Informally, this lemma says that evaluation
produces either a value of the appropriate type, a cast error, or
KillError (because evaluation is cut short), but never a type er-
ror. The placement of e | µ ↪→n r | µ ′ in the conclusion of the
lemma proves that our evaluation rules are complete, analogous to
a progress lemma for small-step semantics. This placement would
normally be a naive mistake because not all programs terminate.
However, by using n-depth evaluation, we can construct a judg-
ment regardless of whether the program is non-terminating because
evaluation is always cut short if the derivation depth exceeds n.
But does this lemma handle all terminating programs? The lemma
is (implicitly) universally quantified over the evaluation depth n.
For every program that terminates there is a depth that will allow
it to terminate, and this lemma will hold for that depth. Thus, this
lemma applies to all terminating programs and does not apply to

non-terminating program, as we intend. We learned of this tech-
nique from Ernst, Ostermann, and Cook [11], but its origins go
back at least to Volpano and Smith [41].

Lemma 8 (Soundness of evaluation). If ∅ | Σ ` e : τ ∧ ∅ | Σ |= µ

then ∃ r µ ′Σ ′. e | µ ↪→n r | µ ′∧ ∅ | Σ ′ |= µ ′ ∧ (∀ l. l ∈ dom Σ −→ Σ ′

l = Σ l) ∧ ((∃ v. r = v ∧ v ∈ V ∧ ∅ | Σ ′ ` v : τ) ∨ r = CastError ∨ r =
KillError).

Proof. The proof is by strong induction on the evaluation depth.
We then perform case analysis on the final step of the typing
judgment. The case for function application uses the substitution
lemma and the case for casts uses environment expansion. The
cases for references and assign use the lemma for changing the
store typing. The inversion lemmas are used throughout.

Theorem 2 (Type safety). If ∅ ` e⇒ e ′ : τ then ∃ r µ Σ. e ′ | ∅ ↪→n
r | µ ∧ ((∃ v. r = v ∧ v ∈ V ∧ ∅ | Σ ` v : τ) ∨ r = CastError ∨ r =

KillError).

Proof. Apply Lemma 3 and then Lemma 8.

6. Relation to Dynamic of Abadi et al.
We defined the semantics for λ?

→ with a translation to λ〈τ〉→ , a lan-
guage with explicit casts. Perhaps a more obvious choice for in-
termediate language would be the pre-existing language of explicit
casts of Abadi et. all [1]. However, there does not seem to be a
straightforward translation from λ〈τ〉→ to their language. Consider
the evaluation rule (ECSTF) and how that functionality might be
implemented in terms of typecase. The parameter z must be cast
to τ , which is not known statically but only dynamically. To im-
plement this cast we would need to dispatch based on τ , perhaps
with a typecase. However, typecase must be applied to a value,
and there is no way for us to obtain a value of type τ from a value
of type τ → τ ′. Quoting from [1]:

Neither tostring nor typetostring quite does its job: for
example, when tostring gets to a function, it stops without
giving any more information about the function. It can do
no better, given the mechanisms we have described, since
there is no effective way to get from a function value to an
element of its domain or codomain.

Of course, if their language were to be extended with a construct for
performing case analysis on types, such as the typerec of Harper
and Morrisett [19], it would be straightforward to implement the
appropriate casting behavior.

7. Related Work
Several programming languages provide gradual typing to some
degree, such as Cecil [8], Boo [10], extensions to Visual Basic.NET
and C# proposed by Meijer and Drayton [26], extensions to Java
proposed by Gray et al. [17], and the Bigloo [6, 36] dialect of
Scheme [24]. This paper formalizes a type system that provides
a theoretical foundation for these languages.
Common LISP [23] and Dylan [12, 37] include optional type an-
notations, but the annotations are not used for type checking, they
are used to improve performance.
Cartwright and Fagan’s Soft Typing [7] improves the performance
of dynamically typed languages by inferring types and removing
the associated run-time dispatching. They do not focus on statically
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catching type errors, as we do here, and do not study a source
language with optional type annotations.
Anderson and Drossopoulou formalize BabyJ [2], an object-
oriented language inspired by JavaScript. BabyJ has a nominal
type system, so types are class names and the permissive type ∗.
In the type rules for BabyJ, whenever equality on types would nor-
mally be used, they instead use the relation τ1 ≈ τ2 which holds
whenever τ1 and τ2 are the same name, or when at least one of
them is the permissive type ∗. Our unknown type ? is similar to
the permissive type ∗, however, the setting of our work is a struc-
tural type system and our type compatibility relation ∼ takes into
account function types.
Riely and Hennessy [35] define a partial type system for Dπ,
a distributed π-calculus. Their system allows some locations to
be untyped and assigns such locations the type lbad. Their type
system, like Quasi-Static Typing, relies on subtyping, however they
treat lbad as “bottom”, which allows objects of type lbad to be
implicitly coercible to any other type.
Gradual typing is syntactically similar to type inferencing [9, 21,
27]: both approaches allow type annotations to be omitted. How-
ever, with type inference, the type system tries to reconstruct what
the type annotations should be, and if it cannot, rejects the program.
In contrast, a gradual type system accepts that it does not know cer-
tain types and inserts run-time casts.
Henglein [20] presents a translation from untyped λ-terms to a co-
ercion calculus with explicit casts. These casts make explicit the
tagging, untagging, and tag-checking operations that occur during
the execution of a language with latent (dynamic) typing. Hen-
glein’s coercion calculus seems to be closely related to our λ〈τ〉→ but
we have not yet formalized the relation. Henglein does not study a
source language with partially typed terms with a static type sys-
tem, as we do here. Instead, his source language is a dynamically
typed language.
Bracha [4] defines optional type systems as type systems that do not
affect the semantics of the language and where type annotations are
optional. Bracha cites Strongtalk [5] as an example of an optional
type system, however, that work does not define a formal type
system or describe how omitted type annotations are treated.
Ou et. all. [31] define a language that combines standard static
typing with more powerful dependent typing. Implicit coercions
are allowed to and from dependent types and run-time checks are
inserted. This combination of a weaker and a stronger type system
is analogous to the combination of dynamic typing and static typing
presented in this paper.
Flanagan [15] introduces Hybrid Type Checking, which combines
standard static typing with refinement types, where the refinements
may express arbitrary predicates. The type system tries to satisfy
the predicates using automated theorem proving, but when no con-
clusive answer is given, the system inserts run-time checks. This
work is also analogous to ours in that it combines a weaker and
stronger type system, allowing implicit coercions between the two
systems and inserting run-time checks. One notable difference be-
tween our system and Flanagan’s is that his is based on subtyping
whereas ours is based on the consistency relation.
Gronski, Knowles, Tomb, Freund, and Flanagan [18] developed the
Sage language which provides Hybrid Type Checking and also a
Dynamic type with implicit (run-time checked) down-casts. Sur-
prisingly, the Sage type system does not allow implicit down-casts
from Dynamic, whereas the Sage type checking (and compilation)
algorithm does allow implicit down-casts. It may be that the given
type system was intended to characterize the output of compilation
(though it is missing a rule for cast), but then a type system for
the source language remains to be defined. The Sage technical re-

port [18] does not include a result such as Theorem 1 of this paper
to show that the type system catches all type errors for fully anno-
tated programs, which is a tricky property to achieve in the presence
of a Dynamic type with implicit down-casts.
There are many interesting issues regarding efficient representa-
tions for values in a language that mixes static and dynamic typing.
The issues are the same as for parametric polymorphism (dynamic
typing is just a different kind of polymorphism). Leroy [25] dis-
cusses the use of mixing boxed and unboxed representations and
such an approach is also possible for our gradual type system.
Shao [38] further improves on Leroy’s mixed approach by showing
how it can be combined with the type-passing approach of Harper
and Morrisett [19] and thereby provide support for recursive and
mutable types.

8. Conclusion
The debate between dynamic and static typing has continued for
several decades, with good reason. There are convincing arguments
for both sides. Dynamic typing is better suited than static for proto-
typing, scripting, and gluing components, whereas static typing is
better suited for algorithms, data-structures, and systems program-
ming. It is common practice for programmers to start development
of a program in a dynamic language and then translate to a static
language midway through development. However, static and dy-
namic languages are often radically different, making this transla-
tion difficult and error prone. Ideally, migrating between dynamic
to static could take place gradually and while staying within the
same language.
In this paper we present the formal definition of the language λ?

→,
including its static and dynamic semantics. This language captures
the key ingredients for implementing gradual typing in functional
languages. The language λ?

→ provides the flexibility of dynami-
cally typed languages when type annotations are omitted by the
programmer and provides the benefits of static checking when all
function parameters are annotated, including the safety guarantees
(Theorem 1) and the time and space efficiency (Lemma 5). Further-
more, the cost of dynamism is “pay-as-you-go”, so partially anno-
tated programs enjoy the benefits of static typing to the degree that
they are annotated. We prove type safety for λ?

→ (Theorem 2); the
type system prevents type violations from occurring at run-time,
either by catching the errors statically or by catching them dynam-
ically with a cast exception. The type system and run-time seman-
tics of λ?

→ is relatively straightforward, so it is suitable for practical
languages.
As future work, we intend to investigate the interaction between our
gradual type system and types such as lists, arrays, algebraic data
types, and implicit coercions between types, such as the types in
Scheme’s numerical tower. We also plan to investigate the interac-
tion between gradual typing and parametric polymorphism [16, 34]
and Hindley-Milner inference [9, 21, 27]. We have implemented
and tested an interpreter for the λ?

→ calculus. As future work
we intend to incorporate gradual typing as presented here into a
mainstream dynamically typed programming language and per-
form studies to evaluate whether gradual typing can benefit pro-
grammer productivity.
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